

The High-Throughput Toolkit (httk)

This website documents the High-Throughput Toolkit (httk). Looking for the Open Materials Database? It is at: http://openmaterialsdb.se

About the High-Throughput Toolkit

The High-Throughput Toolkit (httk) is a toolkit for:

	Preparing and running calculations.

	Analyzing the results.

	Store the results and outcome in a global and/or in a personalized database.

httk is an independent implementation of the database-centric high-throughput methodology
pioneered by Ceder et al., and others. [see, e.g., Comp. Mat. Sci. 50, 2295 (2011)].
httk is presently targeted at atomistic calculations in materials science and electronic
structure, but aims to be extended into a library useful also outside those areas.

 <

 httk license

httk license

 GNU AFFERO GENERAL PUBLIC LICENSE
 Version 3, 19 November 2007

 Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
 Everyone is permitted to copy and distribute verbatim copies
 of this license document, but changing it is not allowed.

 Preamble

 The GNU Affero General Public License is a free, copyleft license for
software and other kinds of works, specifically designed to ensure
cooperation with the community in the case of network server software.

 The licenses for most software and other practical works are designed
to take away your freedom to share and change the works. By contrast,
our General Public Licenses are intended to guarantee your freedom to
share and change all versions of a program--to make sure it remains free
software for all its users.

 When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
them if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new
free programs, and that you know you can do these things.

 Developers that use our General Public Licenses protect your rights
with two steps: (1) assert copyright on the software, and (2) offer
you this License which gives you legal permission to copy, distribute
and/or modify the software.

 A secondary benefit of defending all users' freedom is that
improvements made in alternate versions of the program, if they
receive widespread use, become available for other developers to
incorporate. Many developers of free software are heartened and
encouraged by the resulting cooperation. However, in the case of
software used on network servers, this result may fail to come about.
The GNU General Public License permits making a modified version and
letting the public access it on a server without ever releasing its
source code to the public.

 The GNU Affero General Public License is designed specifically to
ensure that, in such cases, the modified source code becomes available
to the community. It requires the operator of a network server to
provide the source code of the modified version running there to the
users of that server. Therefore, public use of a modified version, on
a publicly accessible server, gives the public access to the source
code of the modified version.

 An older license, called the Affero General Public License and
published by Affero, was designed to accomplish similar goals. This is
a different license, not a version of the Affero GPL, but Affero has
released a new version of the Affero GPL which permits relicensing under
this license.

 The precise terms and conditions for copying, distribution and
modification follow.

 TERMS AND CONDITIONS

 0. Definitions.

 "This License" refers to version 3 of the GNU Affero General Public License.

 "Copyright" also means copyright-like laws that apply to other kinds of
works, such as semiconductor masks.

 "The Program" refers to any copyrightable work licensed under this
License. Each licensee is addressed as "you". "Licensees" and
"recipients" may be individuals or organizations.

 To "modify" a work means to copy from or adapt all or part of the work
in a fashion requiring copyright permission, other than the making of an
exact copy. The resulting work is called a "modified version" of the
earlier work or a work "based on" the earlier work.

 A "covered work" means either the unmodified Program or a work based
on the Program.

 To "propagate" a work means to do anything with it that, without
permission, would make you directly or secondarily liable for
infringement under applicable copyright law, except executing it on a
computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification), making available to the
public, and in some countries other activities as well.

 To "convey" a work means any kind of propagation that enables other
parties to make or receive copies. Mere interaction with a user through
a computer network, with no transfer of a copy, is not conveying.

 An interactive user interface displays "Appropriate Legal Notices"
to the extent that it includes a convenient and prominently visible
feature that (1) displays an appropriate copyright notice, and (2)
tells the user that there is no warranty for the work (except to the
extent that warranties are provided), that licensees may convey the
work under this License, and how to view a copy of this License. If
the interface presents a list of user commands or options, such as a
menu, a prominent item in the list meets this criterion.

 1. Source Code.

 The "source code" for a work means the preferred form of the work
for making modifications to it. "Object code" means any non-source
form of a work.

 A "Standard Interface" means an interface that either is an official
standard defined by a recognized standards body, or, in the case of
interfaces specified for a particular programming language, one that
is widely used among developers working in that language.

 The "System Libraries" of an executable work include anything, other
than the work as a whole, that (a) is included in the normal form of
packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A
"Major Component", in this context, means a major essential component
(kernel, window system, and so on) of the specific operating system
(if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.

 The "Corresponding Source" for a work in object code form means all
the source code needed to generate, install, and (for an executable
work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work's
System Libraries, or general-purpose tools or generally available free
programs which are used unmodified in performing those activities but
which are not part of the work. For example, Corresponding Source
includes interface definition files associated with source files for
the work, and the source code for shared libraries and dynamically
linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those
subprograms and other parts of the work.

 The Corresponding Source need not include anything that users
can regenerate automatically from other parts of the Corresponding
Source.

 The Corresponding Source for a work in source code form is that
same work.

 2. Basic Permissions.

 All rights granted under this License are granted for the term of
copyright on the Program, and are irrevocable provided the stated
conditions are met. This License explicitly affirms your unlimited
permission to run the unmodified Program. The output from running a
covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your
rights of fair use or other equivalent, as provided by copyright law.

 You may make, run and propagate covered works that you do not
convey, without conditions so long as your license otherwise remains
in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you
with facilities for running those works, provided that you comply with
the terms of this License in conveying all material for which you do
not control copyright. Those thus making or running the covered works
for you must do so exclusively on your behalf, under your direction
and control, on terms that prohibit them from making any copies of
your copyrighted material outside their relationship with you.

 Conveying under any other circumstances is permitted solely under
the conditions stated below. Sublicensing is not allowed; section 10
makes it unnecessary.

 3. Protecting Users' Legal Rights From Anti-Circumvention Law.

 No covered work shall be deemed part of an effective technological
measure under any applicable law fulfilling obligations under article
11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such
measures.

 When you convey a covered work, you waive any legal power to forbid
circumvention of technological measures to the extent such circumvention
is effected by exercising rights under this License with respect to
the covered work, and you disclaim any intention to limit operation or
modification of the work as a means of enforcing, against the work's
users, your or third parties' legal rights to forbid circumvention of
technological measures.

 4. Conveying Verbatim Copies.

 You may convey verbatim copies of the Program's source code as you
receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code;
keep intact all notices of the absence of any warranty; and give all
recipients a copy of this License along with the Program.

 You may charge any price or no price for each copy that you convey,
and you may offer support or warranty protection for a fee.

 5. Conveying Modified Source Versions.

 You may convey a work based on the Program, or the modifications to
produce it from the Program, in the form of source code under the
terms of section 4, provided that you also meet all of these conditions:

 a) The work must carry prominent notices stating that you modified
 it, and giving a relevant date.

 b) The work must carry prominent notices stating that it is
 released under this License and any conditions added under section
 7. This requirement modifies the requirement in section 4 to
 "keep intact all notices".

 c) You must license the entire work, as a whole, under this
 License to anyone who comes into possession of a copy. This
 License will therefore apply, along with any applicable section 7
 additional terms, to the whole of the work, and all its parts,
 regardless of how they are packaged. This License gives no
 permission to license the work in any other way, but it does not
 invalidate such permission if you have separately received it.

 d) If the work has interactive user interfaces, each must display
 Appropriate Legal Notices; however, if the Program has interactive
 interfaces that do not display Appropriate Legal Notices, your
 work need not make them do so.

 A compilation of a covered work with other separate and independent
works, which are not by their nature extensions of the covered work,
and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called an
"aggregate" if the compilation and its resulting copyright are not
used to limit the access or legal rights of the compilation's users
beyond what the individual works permit. Inclusion of a covered work
in an aggregate does not cause this License to apply to the other
parts of the aggregate.

 6. Conveying Non-Source Forms.

 You may convey a covered work in object code form under the terms
of sections 4 and 5, provided that you also convey the
machine-readable Corresponding Source under the terms of this License,
in one of these ways:

 a) Convey the object code in, or embodied in, a physical product
 (including a physical distribution medium), accompanied by the
 Corresponding Source fixed on a durable physical medium
 customarily used for software interchange.

 b) Convey the object code in, or embodied in, a physical product
 (including a physical distribution medium), accompanied by a
 written offer, valid for at least three years and valid for as
 long as you offer spare parts or customer support for that product
 model, to give anyone who possesses the object code either (1) a
 copy of the Corresponding Source for all the software in the
 product that is covered by this License, on a durable physical
 medium customarily used for software interchange, for a price no
 more than your reasonable cost of physically performing this
 conveying of source, or (2) access to copy the
 Corresponding Source from a network server at no charge.

 c) Convey individual copies of the object code with a copy of the
 written offer to provide the Corresponding Source. This
 alternative is allowed only occasionally and noncommercially, and
 only if you received the object code with such an offer, in accord
 with subsection 6b.

 d) Convey the object code by offering access from a designated
 place (gratis or for a charge), and offer equivalent access to the
 Corresponding Source in the same way through the same place at no
 further charge. You need not require recipients to copy the
 Corresponding Source along with the object code. If the place to
 copy the object code is a network server, the Corresponding Source
 may be on a different server (operated by you or a third party)
 that supports equivalent copying facilities, provided you maintain
 clear directions next to the object code saying where to find the
 Corresponding Source. Regardless of what server hosts the
 Corresponding Source, you remain obligated to ensure that it is
 available for as long as needed to satisfy these requirements.

 e) Convey the object code using peer-to-peer transmission, provided
 you inform other peers where the object code and Corresponding
 Source of the work are being offered to the general public at no
 charge under subsection 6d.

 A separable portion of the object code, whose source code is excluded
from the Corresponding Source as a System Library, need not be
included in conveying the object code work.

 A "User Product" is either (1) a "consumer product", which means any
tangible personal property which is normally used for personal, family,
or household purposes, or (2) anything designed or sold for incorporation
into a dwelling. In determining whether a product is a consumer product,
doubtful cases shall be resolved in favor of coverage. For a particular
product received by a particular user, "normally used" refers to a
typical or common use of that class of product, regardless of the status
of the particular user or of the way in which the particular user
actually uses, or expects or is expected to use, the product. A product
is a consumer product regardless of whether the product has substantial
commercial, industrial or non-consumer uses, unless such uses represent
the only significant mode of use of the product.

 "Installation Information" for a User Product means any methods,
procedures, authorization keys, or other information required to install
and execute modified versions of a covered work in that User Product from
a modified version of its Corresponding Source. The information must
suffice to ensure that the continued functioning of the modified object
code is in no case prevented or interfered with solely because
modification has been made.

 If you convey an object code work under this section in, or with, or
specifically for use in, a User Product, and the conveying occurs as
part of a transaction in which the right of possession and use of the
User Product is transferred to the recipient in perpetuity or for a
fixed term (regardless of how the transaction is characterized), the
Corresponding Source conveyed under this section must be accompanied
by the Installation Information. But this requirement does not apply
if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has
been installed in ROM).

 The requirement to provide Installation Information does not include a
requirement to continue to provide support service, warranty, or updates
for a work that has been modified or installed by the recipient, or for
the User Product in which it has been modified or installed. Access to a
network may be denied when the modification itself materially and
adversely affects the operation of the network or violates the rules and
protocols for communication across the network.

 Corresponding Source conveyed, and Installation Information provided,
in accord with this section must be in a format that is publicly
documented (and with an implementation available to the public in
source code form), and must require no special password or key for
unpacking, reading or copying.

 7. Additional Terms.

 "Additional permissions" are terms that supplement the terms of this
License by making exceptions from one or more of its conditions.
Additional permissions that are applicable to the entire Program shall
be treated as though they were included in this License, to the extent
that they are valid under applicable law. If additional permissions
apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by
this License without regard to the additional permissions.

 When you convey a copy of a covered work, you may at your option
remove any additional permissions from that copy, or from any part of
it. (Additional permissions may be written to require their own
removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work,
for which you have or can give appropriate copyright permission.

 Notwithstanding any other provision of this License, for material you
add to a covered work, you may (if authorized by the copyright holders of
that material) supplement the terms of this License with terms:

 a) Disclaiming warranty or limiting liability differently from the
 terms of sections 15 and 16 of this License; or

 b) Requiring preservation of specified reasonable legal notices or
 author attributions in that material or in the Appropriate Legal
 Notices displayed by works containing it; or

 c) Prohibiting misrepresentation of the origin of that material, or
 requiring that modified versions of such material be marked in
 reasonable ways as different from the original version; or

 d) Limiting the use for publicity purposes of names of licensors or
 authors of the material; or

 e) Declining to grant rights under trademark law for use of some
 trade names, trademarks, or service marks; or

 f) Requiring indemnification of licensors and authors of that
 material by anyone who conveys the material (or modified versions of
 it) with contractual assumptions of liability to the recipient, for
 any liability that these contractual assumptions directly impose on
 those licensors and authors.

 All other non-permissive additional terms are considered "further
restrictions" within the meaning of section 10. If the Program as you
received it, or any part of it, contains a notice stating that it is
governed by this License along with a term that is a further
restriction, you may remove that term. If a license document contains
a further restriction but permits relicensing or conveying under this
License, you may add to a covered work material governed by the terms
of that license document, provided that the further restriction does
not survive such relicensing or conveying.

 If you add terms to a covered work in accord with this section, you
must place, in the relevant source files, a statement of the
additional terms that apply to those files, or a notice indicating
where to find the applicable terms.

 Additional terms, permissive or non-permissive, may be stated in the
form of a separately written license, or stated as exceptions;
the above requirements apply either way.

 8. Termination.

 You may not propagate or modify a covered work except as expressly
provided under this License. Any attempt otherwise to propagate or
modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third
paragraph of section 11).

 However, if you cease all violation of this License, then your
license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly and
finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means
prior to 60 days after the cessation.

 Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.

 Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, you do not qualify to receive new licenses for the same
material under section 10.

 9. Acceptance Not Required for Having Copies.

 You are not required to accept this License in order to receive or
run a copy of the Program. Ancillary propagation of a covered work
occurring solely as a consequence of using peer-to-peer transmission
to receive a copy likewise does not require acceptance. However,
nothing other than this License grants you permission to propagate or
modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a
covered work, you indicate your acceptance of this License to do so.

 10. Automatic Licensing of Downstream Recipients.

 Each time you convey a covered work, the recipient automatically
receives a license from the original licensors, to run, modify and
propagate that work, subject to this License. You are not responsible
for enforcing compliance by third parties with this License.

 An "entity transaction" is a transaction transferring control of an
organization, or substantially all assets of one, or subdividing an
organization, or merging organizations. If propagation of a covered
work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever
licenses to the work the party's predecessor in interest had or could
give under the previous paragraph, plus a right to possession of the
Corresponding Source of the work from the predecessor in interest, if
the predecessor has it or can get it with reasonable efforts.

 You may not impose any further restrictions on the exercise of the
rights granted or affirmed under this License. For example, you may
not impose a license fee, royalty, or other charge for exercise of
rights granted under this License, and you may not initiate litigation
(including a cross-claim or counterclaim in a lawsuit) alleging that
any patent claim is infringed by making, using, selling, offering for
sale, or importing the Program or any portion of it.

 11. Patents.

 A "contributor" is a copyright holder who authorizes use under this
License of the Program or a work on which the Program is based. The
work thus licensed is called the contributor's "contributor version".

 A contributor's "essential patent claims" are all patent claims
owned or controlled by the contributor, whether already acquired or
hereafter acquired, that would be infringed by some manner, permitted
by this License, of making, using, or selling its contributor version,
but do not include claims that would be infringed only as a
consequence of further modification of the contributor version. For
purposes of this definition, "control" includes the right to grant
patent sublicenses in a manner consistent with the requirements of
this License.

 Each contributor grants you a non-exclusive, worldwide, royalty-free
patent license under the contributor's essential patent claims, to
make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.

 In the following three paragraphs, a "patent license" is any express
agreement or commitment, however denominated, not to enforce a patent
(such as an express permission to practice a patent or covenant not to
sue for patent infringement). To "grant" such a patent license to a
party means to make such an agreement or commitment not to enforce a
patent against the party.

 If you convey a covered work, knowingly relying on a patent license,
and the Corresponding Source of the work is not available for anyone
to copy, free of charge and under the terms of this License, through a
publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so
available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner
consistent with the requirements of this License, to extend the patent
license to downstream recipients. "Knowingly relying" means you have
actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient's use of the covered work
in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.

 If, pursuant to or in connection with a single transaction or
arrangement, you convey, or propagate by procuring conveyance of, a
covered work, and grant a patent license to some of the parties
receiving the covered work authorizing them to use, propagate, modify
or convey a specific copy of the covered work, then the patent license
you grant is automatically extended to all recipients of the covered
work and works based on it.

 A patent license is "discriminatory" if it does not include within
the scope of its coverage, prohibits the exercise of, or is
conditioned on the non-exercise of one or more of the rights that are
specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is
in the business of distributing software, under which you make payment
to the third party based on the extent of your activity of conveying
the work, and under which the third party grants, to any of the
parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work
conveyed by you (or copies made from those copies), or (b) primarily
for and in connection with specific products or compilations that
contain the covered work, unless you entered into that arrangement,
or that patent license was granted, prior to 28 March 2007.

 Nothing in this License shall be construed as excluding or limiting
any implied license or other defenses to infringement that may
otherwise be available to you under applicable patent law.

 12. No Surrender of Others' Freedom.

 If conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot convey a
covered work so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may
not convey it at all. For example, if you agree to terms that obligate you
to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this
License would be to refrain entirely from conveying the Program.

 13. Remote Network Interaction; Use with the GNU General Public License.

 Notwithstanding any other provision of this License, if you modify the
Program, your modified version must prominently offer all users
interacting with it remotely through a computer network (if your version
supports such interaction) an opportunity to receive the Corresponding
Source of your version by providing access to the Corresponding Source
from a network server at no charge, through some standard or customary
means of facilitating copying of software. This Corresponding Source
shall include the Corresponding Source for any work covered by version 3
of the GNU General Public License that is incorporated pursuant to the
following paragraph.

 Notwithstanding any other provision of this License, you have
permission to link or combine any covered work with a work licensed
under version 3 of the GNU General Public License into a single
combined work, and to convey the resulting work. The terms of this
License will continue to apply to the part which is the covered work,
but the work with which it is combined will remain governed by version
3 of the GNU General Public License.

 14. Revised Versions of this License.

 The Free Software Foundation may publish revised and/or new versions of
the GNU Affero General Public License from time to time. Such new versions
will be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.

 Each version is given a distinguishing version number. If the
Program specifies that a certain numbered version of the GNU Affero General
Public License "or any later version" applies to it, you have the
option of following the terms and conditions either of that numbered
version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of the
GNU Affero General Public License, you may choose any version ever published
by the Free Software Foundation.

 If the Program specifies that a proxy can decide which future
versions of the GNU Affero General Public License can be used, that proxy's
public statement of acceptance of a version permanently authorizes you
to choose that version for the Program.

 Later license versions may give you additional or different
permissions. However, no additional obligations are imposed on any
author or copyright holder as a result of your choosing to follow a
later version.

 15. Disclaimer of Warranty.

 THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

 16. Limitation of Liability.

 IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

 17. Interpretation of Sections 15 and 16.

 If the disclaimer of warranty and limitation of liability provided
above cannot be given local legal effect according to their terms,
reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the
Program, unless a warranty or assumption of liability accompanies a
copy of the Program in return for a fee.

 END OF TERMS AND CONDITIONS

 How to Apply These Terms to Your New Programs

 If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.

 To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
state the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.

 <one line to give the program's name and a brief idea of what it does.>
 Copyright (C) <year> <name of author>

 This program is free software: you can redistribute it and/or modify
 it under the terms of the GNU Affero General Public License as published by
 the Free Software Foundation, either version 3 of the License, or
 (at your option) any later version.

 This program is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 GNU Affero General Public License for more details.

 You should have received a copy of the GNU Affero General Public License
 along with this program. If not, see <http://www.gnu.org/licenses/>.

Also add information on how to contact you by electronic and paper mail.

 If your software can interact with users remotely through a computer
network, you should also make sure that it provides a way for users to
get its source. For example, if your program is a web application, its
interface could display a "Source" link that leads users to an archive
of the code. There are many ways you could offer source, and different
solutions will be better for different programs; see section 13 for the
specific requirements.

 You should also get your employer (if you work as a programmer) or school,
if any, to sign a "copyright disclaimer" for the program, if necessary.
For more information on this, and how to apply and follow the GNU AGPL, see
<http://www.gnu.org/licenses/>.

 httk Developers’ Guide

httk Developers’ Guide

Introduction

This file is the developers' guide for adding to / changing the
functionality of the httk toolset and python library. For other
topics the
front page.

You likely want to have read the users’ guide before reading this.

Short points for experienced developers

	Follow PEP8, except –ignore=E226,E265,E266,E401,E402,E501,W291,W293,W391

	Favor unmutable classes over mutable ones

	For arrays of numbers, use core/FracVector unless you have a reason

	Constructors are generally considered private, use a create(…) static method instead.

	Type conversion should be handled with use(other) methods

	File I/O should be done with the core/ioadapters classes

	Note the plugin system that comes via inheritance from HttkObject

Overview of the python library

	Arrays of numbers: essentially all arrays of numbers within
httk.core are implemented using our own vector math class,
FracVector. There are many things that can be argued about the pros
and cons of re-implementing vector math vs. using numpy vectors. The
primary reasons for this design choice was:

	FracVectors are exact (they are based on fractions), meaning
that no information is ever lost about cell shapes and atomic
positions, there is no need to handle floating-point
‘fussiness’ with cutoffs etc. Cell matrices can be exactly
inverted, and so on.

	FracVectors are immutable (but there is a MutableFracVector).
They can thus be used as e.g., keys in dictionaries, in sets,
etc. This lets us avoid certain type of difficult-to-find bugs
where one by mistake mutates a vector that is used elsewhere.
(For more info, see the section ‘Rant about mutable vs.
non-mutable classes’ at the end of this document.)

	FracVectors are implemented in pure Python, making the core
part of httk a pure Python library = very easy to install and
get up and running

	FracVectors are easy to convert to floating point arrays when
high speed is needed (the opposite conversion is not as easy,
requires cutoffs, and will generally not give the exact same
results between different computers due to differences in
floating point processing.)

	Basic structural classes: we implement our own, rather than using a
‘structure’ class of another library (e.g., ‘Atoms’ from ASE). This
way we avoid dependencies, but most importantly, our structure
classes generally avoid floating point numbers (see discussion about
FracVector above). We provide via the ‘httk.iface’ module
conversions to many other structure types in other libraries.

Constructors

The python __init__ constructor is regarded as private throughout
httk. These constructors should be very light-weight and not sanitize
or process their arguments. The arguments to the constructor normally
reflect the internal representation of the data and changes when the
internal data representation changes as part of future development.

The public constructor should normally be an @classmethod named
‘create’. The parameters to create are meant to stay the same even
when the internal representation of the data in the class changes. We
want ‘create’ to be as flexible as possible and able to take data on
multiple forms. A very common design pattern is that the create method
is a “swiss army knife” type creator that can take a multitude of
named arguments, and only some set of those arguments are needed to be
given. E.g., both these are valid examples of creating a new Structure
object:

mystruct = Structure.create(cell=mycell, coords=mycoords, counts=mycounts)
mystruct = Structure.create(a=my_a, b=my_b, c=my_c, alpha=my_alpha, beta=my_beta, gamma=my_gamma, coords=mycoords, counts=mycounts)

Motivation for using create rather than __init__: if __init__
constructors are used as public, one may get into serious limitations
in how the internal data representation of the class can be changed
later. Also, sometimes it is necessary to create new objects in a way
that bypasses any processing of arguments, and this becomes difficult
and inelegant if __init__ is already an established public
swiss-army-knife type constructor.

The ‘use’ method

Throughout httk we have another standardized @classmethod method
called ‘use’. It means “make a best effort to convert the object given
into the class on which we call ‘use’. E.g.,

duck = Duck.use(ducklike)

tries to convert ducklike into a Duck, if it is not already of type
Duck, in which case it is just returned unmodified. The primary
difference between ‘use’ and ‘create’ is that use always only take one
argument (an object we think is ‘equivalent’ with, e.g., a Duck) and
that we generally try to avoid creating a new object if we can.

To better explain the need for this, consider the class ‘Structure’
and the database class ‘DbStructure’. We do not want the ‘db’ module
to leak into the core module (e.g., there should never be any type
testing against, e.g., DbStructure or imports from the db submodule
into core.) Yet, a Structure and a DbStructure are essentially “the
same thing”, so methods that expect a ‘Structure’ with full freedom to
use an object as if it is a normal structure is expected to work like
this:

def do_something(struct):
 struct = Structure.use(struct)
 struct.some_method(...)

This saves the need to have to stop and think “wait, is this a
function that takes a UnitcellStructure or a Structure?” when using
the functions.

One may suggest that it would be better to use object-oriented
inheritance for this functionality. However, inheritance typically
does not work that great with primitive types (e.g., functions that
can take both a string as a file reference, or a Path object, or an
IOStream object). Nor does object oriented programming give an
unambiguous solution for cross-converting between subclasses. Note
the following example of the ‘use’ method:

uc_struct = UnitcellStructure()
numpy_stuct = NumpyStructure.use(uc_struct)
now use numpy_struct in a way that requires NumpyStructure specific methods

(Note that there is not yet any NumpyStructure in httk, but will
probably be in the future.) In practice NumpyStructure and
UnitcellStructure are in different submodules and it makes no sense to
make either one inherit from the other, but they (could) both inherit
from a common superclass (e.g. ‘AbstractStructure’). Nevertheless,
even if they do that, there is no obvious way just from object
oriented programming to know how to do the above conversion. One could
of course ‘upcast’ UnitcellStructure to AbstractStructure, but the
downcast into a NumpyStructure is then not trivial. Also, there could
be great benefits in using a conversion ‘shortcut’ between these two
classes that saves time over upcast + a generic downcast.

I/O Adapters

For file io we use httk.core.ioadapters. References to files and
output streams can have many types, e.g., strings (i.e., a path),
instances of the object Path, instances of Stream, etc. The ioadapters
help writing functions that can deal with all these types of
references to files comparably easy, without large “if elif elif elif”
forks in every such function. Lets say that you write a function that
generates some output data:

def write_data(fio):
 fio = IoAdapterFileWriter.use(fio)
 f = fio.file
 f.write("OUTPUT")
 fio.close()

This allows the input argument ‘fio’ to be of many, many, different
types. You never really need to bother with “converting” your argument
before calling write_data. You just choose that you want whatever
‘fio’ was to be turned into an IoAdapterFileWriter, and then you just
pick out the ‘file’ property and use it as a file. You never need to
specifically worry about whether fio already was an
IoAdapterFileWriter, or just the filename ‘output.txt’, or a Path
object.

Classes and interfaces

A design principle is to keep classes short. As a general rule: only
methods that absolutely need to work with the internal data structures
of a class should go into the class! Other “methods” should simply be
written as regular functions that take one (or more) instances of the
class. Put the class in ‘classname.py’ and the utility methods in
‘classnameutils.py’.

The primary benefit of this is that the duck-typing of python allows
us to re-use those exact functions even with other objects that
fulfill the same API interface as the original class. This cannot be
done if they are implemented as instance methods.

However, it is ok to extend the class with convenience methods that
are very short calls into functions implemented elsewhere, e.g.,

@property
structue.normalized_formula(self):
 return normalized_formula(self)

as this helps finding the right method when calling help(object). The
difference is that the full implementation is not put into the class
iself.

Plugins

To avoid dependences on libraries that you may not have installed,
httk implements somewhat unusual ‘plugin’-type extensions to any class
that inherits from HttkObject.

The practical outcome is that loading a module, e.g., the atomistic
visualization module, adds functionality to some objects inside
htt.atomistic. E.g.,

from httk import *
from httk.atomistic import *
import httk.atomistic.vis

This adds, e.g., Structure.vis.show() to show a structure.

In practice this is easy to work with in your own code. We’ll use a
plugin to the Structure class as example. All you need to do is:

	create a class that inherits from httk.HttkPlugin, and which
implements a method:

plugin_init(self, struct)

which takes the place of the usual __init__ and gives access to the
‘hosting’ structure instance.

	add this to the corresponding HttkObject by:

Structure.myplugin = HttkPluginWrapper(MyStructurePluginClass)

After this has happened during an import, any call on a structure
instance, e.g.,

struct.myplugin.hello_world()

will call the corresponding method in MyStructurePluginClass. Your
plugin can also have class methods, which gets called by:

Structure.myplugin.classmethod()

For a concrete example, look at the structurevisualizerplugin in
httk.atomistic.vis.

General recommendations for contributed code

	Rule #1: Generally read and follow: http://www.python.org/dev/peps/pep-0008/

	You are encouraged to use the pep8 tool (either directly or via your code
development platform, but, use: –ignore=E401,E402,E501,W291,W293,W391,E265,E266,E226
(See below for motivations.)

	Rule #2: Always organize your code in private sections and a public

	API. Never write code that depends on private sections outside the
class / module / etc.

It is very very easy for a large Python project to degenerate
into a huge pile of code that has such intricate
cross-dependences that it is almost impossible to know the
implications of a seemingly small change. For example, do you
dare changing the internal representation of the data in the X
class? You have to be sure no other class reaches into the
internal data structures and make assumptions about how they
are organized.

The principle of API-oriented organization is simple:

	Every piece of code is either in a private section or
part of the public API.

	Changes to private sections are “easy”, as they should
never break other code

	Changes to the public API are difficult, and should
generally be done only by introducing a new version of
the class / module / etc.

	Every public class should be in its own file named after the
class, things not meant to be used outside that class should
be named with a prefix underscore ‘_’.

	Rule #3: Always make your classes be immutable unless you know why

	you need a mutable class. Do not fall for the pressure of the
premature optimization fairy and the idea that “it will be faster
if I don’t create a new instance”. No one cares if you shave 10 ms
of the final program execution time, but people will care if your
program has bugs. Only optimize code where speed matters. See
longer rant in section below.

Motivations for/discussions about our digressions from pep8

	E226: missing whitespace around arithmetic operator: This rule as
implemented in the pep8 tool is not consistent with the pep0008
standard. Use spaces around arithmetic operators when it adds to
readability.

	E265: block comment should start with ‘# ‘: We do not want to
enforce what can go inside comment sections as they are used rather
freely throughout the code right now. This may change in the future.

	E266: too many leading ‘#’ for block comment: see E265

	E401: multiple imports on one line: In this code we put standard
system libraries as a single import line to avoid the file preambles
to become overly long. All other imports should be each on one line.

	E402: module level import not at top of file: We should generally
strive to put all module imports at the top of the file. However, we
need to depart from this for conditional imports, especially for our
handling of external libraries, and, sometimes for speed
optimization (only do slow import X if a function is run that
absolutely needs it.)

	E501: line too long: Modern editors allow editing wide source with
ease. Try to keep lines down under 100 characters, but this rule
should be violated if significantly increased readability is
obtained by a few even longer lines.

	W291: trailing whitespace: Between all different editors used, this
simply generates too many warnings that makes more important pep8
violations more difficult to see. Once in a while we should simply
run the files through a tool that removes trailing whitespace.

	W293: blank line contains whitespace: I genuinely disagree with this
rule. It is not motivated by the pep0008 standard, but something
unmotivated put in by developers of the pep8 tool. Blank lines
should be indented to the indentation level of the block that they
appear in.

	W391: blank line at end of file: see W291.

A rant about mutable vs. non-mutable classes

While immutable objects incur some overhead due to extra object
creation, they generally make programming much easier. For mutable
objects you have to learn the internals of the implementation to
understand which operations possibly may affect another object.

Consider the following pseudocode for a mutable vector class,:

A = MutableVector(((1,2,3,4),(5,6,7,8)))
B = A[0]
B[1] = 7 # does this also change A at the element [0,1]?!

You cannot know the answer! The answer depends on the
internals of MutableVector! However, for an UnMutableVector the answer
is trivial (‘A’ never changes!). Since no one has time to read
documentation, the usual programmer will learn when and where a
MutableVector affects other vectors by trial-and-error. This leads to
bugs!

E.g., let us consider numpy (where vectors are mutable for a good
reason: the aim of numpy is to do floating point math at very high
speed). Below are some examples of possible assignments operations
that can be placed on line 2 in the code above, and a comment that
specifies whether the subsequent change of B also changes A. Notice
how the behavior is not easy to predict without reading the numpy
documentation!:

B = A[0]
Yes, B becomes a reference into A, so changing B also changes A!

B = (A.T)[0].T
Yes, B is still a reference into A, but with a different shape.
Changing B also changes A!

B = A.flatten()
No, flatten() is documented as "returns a copy of the array",
and indeed, changing B does not change A!

B = A.reshape(8)[0]
Yes. Despite that this seem to be equivalent to flatten(),
B becomes a reference into A instead of a copy! Hence, if someone were
to "clean up the code" by thinking 'flatten is much easier to read'
and replacing it, they will unintentionally change the behavior of the code!

Contributing, License and Redistribution

If you extend the httk framework for yourself, please consider sending
your changes back to us. If your changes are generally useful, they
will be included in our distribution, which will make your life much
simpler when you want to upgrade versions.

Presently patches, bug reports, etc., are handled via email, i.e.,
just email your patches / modified source files to us. (In the future
we’ll make arrange for a better way, e.g., github.)

The High-Throughput Toolkit uses the GNU Affero General Public License
(see the file LICENSE.txt for details), which is an open source license
that allows redistribution and re-use if the license requirements are
met. (Note that this license contains clauses that are not in the
usual GNU Public License, and source code from httk cannot be imported
into GPL-only licensed projects.)

If you plan on redistributing / forking httk with major changes, PLEASE edit
httk/__init__.py and change the ‘version’ variable to contain a
personal suffix. E.g., set version=’1.0.rickard.2’. Then run the
command ‘make dist’. This creates a httk_v{VERSION}.tgz archive that
you can redistribute.

Contact

Our primary point of contact is email to: httk [at] openmaterialsdb.se
(where [at] is replaced by @)

 Full httk API documentation

Full httk API documentation

Contents:

	httk package
	Subpackages
	httk.analysis package
	Subpackages

	httk.atomistic package
	Subpackages

	Submodules

	httk.config package
	Submodules

	httk.core package
	Subpackages

	Submodules

	httk.db package
	Subpackages

	Submodules

	httk.external package
	Submodules

	httk.graphics package
	Subpackages

	httk.httkio package
	Submodules

	httk.httkweb package
	Submodules

	httk.iface package
	Submodules

	httk.optimade package
	Subpackages

	Submodules

	httk.task package
	Submodules

	Submodules
	httk.cli module

	httk.versioning module

Indices and tables

	Index

	Module Index

	Search Page

 httk package

httk package

The high-throughput toolkit (httk)

	A set of tools and utilities meant to help with:

	
	Project management, preparation of large-scale computational project.

	
	Execution of large-scale computational projects

	
	interface with supercomputer cluster queuing systems, etc.

	aid with scripting multi-stage runs

	retrieval of data from supercomputers

	Storage of data in databases

	Search, retrieval and ‘processing’ of data in storage

	Analysis (especially as a helpful interface against 3:rd party software)

	
httk.load(ioa, ext=None)

	A very generic file reader method.

Load a file into a suitable httk object. Try to do the most sane thing possible given the input file.
If you know what to expect from the input file, it may be safer to use a targeted method for that file type.

	
httk.save(obj, ioa, ext=None)

	A very generic file writer method.

Load a file into a suitable httk object. Try to do the most sane thing possible given the input file.
If you know what to expect from the input file, it may be safer to use a targeted method for that file type.

	
httk.cout(*args)

	

	
httk.cerr(*args)

	

	
class httk.Code(name, version)

	Bases: httk.core.httkobject.HttkObject

Object for keeping track of httk data about a computer software or script

	
add_ref(ref)

	

	
add_refs(refs)

	

	
add_tag(tag, val)

	

	
add_tags(tags)

	

	
classmethod create(name, version, refs=None, tags=None)

	Create a Computation object.

	
get_refs()

	

	
get_tag(tag)

	

	
get_tags()

	

	
class httk.Computation(computation_date, description, code, manifest_hash, signatures, keys, relpath, project_counter, added_date=None)

	Bases: httk.core.httkobject.HttkObject

Object for keeping track of httk data about a specific computation run

	
add_project(project)

	

	
add_projects(projects)

	

	
add_ref(ref)

	

	
add_refs(refs)

	

	
add_tag(tag, val)

	

	
add_tags(tags)

	

	
added_date

	

	
classmethod create(computation_date, description, code, manifest_hash, signatures, keys, project_counter, relpath, added_date=None)

	Create a Computation object.

	
get_projects()

	

	
get_refs()

	

	
get_tag(tag)

	

	
get_tags()

	

	
class httk.Result(computation)

	Bases: httk.core.httkobject.HttkObject

Intended as a base class for results tables for computations

	
classmethod create(computation)

	Create a Computation object.

	
class httk.ComputationRelated(main_computation, other_computation, relation)

	Bases: httk.core.httkobject.HttkObject

Object for keeping track of httk data about a specific computation run

	
classmethod create(main_computation, other_computation, relation)

	Create a Computation object.

	
class httk.ComputationProject(computation, project)

	Bases: httk.core.httkobject.HttkObject

	
classmethod create(computation, project)

	Create a Computation object.

	
class httk.Author(last_name, given_names)

	Bases: httk.core.httkobject.HttkObject

Object for keeping track of tags for other objects

	
classmethod create(last_name, given_names)

	Create a Author object.

	
class httk.Reference(ref, authors=None, editors=None, journal=None, journal_issue=None, journal_volume=None, page_first=None, page_last=None, title=None, year=None, book_publisher=None, book_publisher_city=None, book_title=None)

	Bases: httk.core.httkobject.HttkObject

A reference citation

	
classmethod create(ref=None, authors=None, editors=None, journal=None, journal_issue=None, journal_volume=None, page_first=None, page_last=None, title=None, year=None, book_publisher=None, book_publisher_city=None, book_title=None)

	Create a Reference object.

	
class httk.Project(name, description, project_key, keys)

	Bases: httk.core.httkobject.HttkObject

	
add_ref(ref)

	

	
add_refs(refs)

	

	
add_tag(tag, val)

	

	
add_tags(tags)

	

	
classmethod create(name, description, project_key, keys)

	Create a Project object.

	
get_refs()

	

	
get_tag(tag)

	

	
get_tags()

	

	
class httk.ProjectRef(project, reference)

	Bases: httk.core.httkobject.HttkObject

	
class httk.ProjectTag(project, tag, value)

	Bases: httk.core.httkobject.HttkObject

	
class httk.FracVector(noms, denom=1)

	Bases: httk.core.vectors.vector.Vector

FracVector is a general immutable N-dimensional vector (tensor) class for performing linear algebra with fractional numbers.

A FracVector consists of a multidimensional tuple of integer nominators, and a single shared integer denominator.

Since FracVectors are immutable, every operation on a FracVector returns a new FracVector with the result of the operation.
A created FracVector never changes. Hence, they are safe to use as keys in dictionaries, to use in sets, etc.

Note: most methods returns FracVector results that are not simplified (i.e., the FracVector returned does not have
the smallest possible integer denominator). To return a FracVector with the smallest possible denominator, just call
FracVector.simplify() at the last step.

	
T()

	Returns the transpose, A^T.

	
acos(prec=None, degrees=False, limit=False)

	Return a FracVector where every element is the arccos of the element in the source FracVector.

prec = precision (should be set as a fraction)
limit = True requires the denominator to be smaller or equal to precision

	
argmax()

	Return the index of the maximum element across all dimensions in the FracVector.

	
argmin()

	Return the index of the minimum element across all dimensions in the FracVector.

	
asin(prec=None, degrees=False, limit=False)

	Return a FracVector where every element is the arcsin of the element in the source FracVector.

prec = precision (should be set as a fraction)
limit = True requires the denominator to be smaller or equal to precision

	
ceil()

	Returns the integer that is equal to or just below the value stored in a scalar FracVector.

	
classmethod chain_vecs(vecs)

	Optimized chaining of FracVectors.

vecs: a list (or tuple) of fracvectors.

	Returns the same thing as

	FracVector.create(vecs,chain=True)

	i.e., removes outermost dimension and chain the sub-sequences. If input=[[1 2 3],[4,5,6]], then

	FracVector.chain(input) -> [1,2,3,4,5,6]

but this method assumes all vectors share the same denominator (it raises an exception if this is not true)

	
cos(prec=None, degrees=False, limit=False)

	Return a FracVector where every element is the cosine of the element in the source FracVector.

prec = precision (should be set as a fraction)
limit = True requires the denominator to be smaller or equal to precision

	
classmethod create(noms, denom=None, simplify=True, chain=False, min_accuracy=Fraction(1, 10000))

	Create a FracVector from various types of sequences.

Simplest use:

FracVector.create(some_kind_of_sequence)

where ‘some_kind_of_sequence’ can be any nested list or tuple of objects that can be used in the constructor
of the Python Fraction class (also works with strings!). If any object found while traveling the items has a
.to_fractions() method, it will be called and is expected to return a fraction or list or tuple of fractions.

Optional parameters:

	Invocation with denominator: FracVector.create(nominators,denominator)
nominators is any sequence, and denominator a common denominator to divide all nominators with

	simplify: boolean, return a FracVector with the smallest possible denominator.

	chain: boolean, remove outermost dimension and chain the sub-sequences. I.e., if input=[[1 2 3],[4,5,6]], then
FracVector.create(input) -> [1,2,3,4,5,6]

Relevant: FracVector itself implements .to_fractions(), and hence, the same constructor allows stacking
several FracVector objects like this:

vertical_fracvector = FracVector.create([[fracvector1],[fracvector2]])
horizontal_fracvector = FracVector.create([fracvector1,fracvector2],chain=True)

	min_accuracy: set to a boolean to adjust the minimum accuracy assumed in string input.
The default is 1/10000, i.e. 0.33 = 0.3300 = 33/100, whereas 0.3333 = 1/3.
Set it to None to assume infinite accuracy, i.e., convert exactly whatever string is given
(unless a standard deviation is given as a parenthesis after the string.)

	
classmethod create_cos(data, degrees=False, limit=False, find_best_rational=True, prec=Fraction(1, 1000000))

	Creating a FracVector as the cosine of the argument data. If data are composed by strings, the standard deviation of
the numbers are taken into account, and the best possible fractional approximation to the cosines
of the data are returned within the standard deviation.

This is not the same as FracVector.create(data).cos(), which creates the best possible fractional
approximations of data and then takes cos on that.

	
classmethod create_exp(data, prec=Fraction(1, 1000000), limit=False)

	Creating a FracVector as the exponent of the argument data. If data are composed by strings, the standard deviation of
the numbers are taken into account, and the best possible fractional approximation to the cosines
of the data are returned within the standard deviation.

This is not the same as FracVector.create(data).exp(), which creates the best possible fractional
approximations of data and then takes exp on that.

	
classmethod create_sin(data, degrees=False, limit=False, prec=Fraction(1, 1000000))

	Creating a FracVector as the sine of the argument data. If data are composed by strings, the standard deviation of
the numbers are taken into account, and the best possible fractional approximation to the cosines
of the data are returned within the standard deviation.

This is not the same as FracVector.create(data).sin(), which creates the best possible fractional
approximations of data and then takes cos on that.

	
cross(other)

	Returns the vector cross product of the 3-element 1D vector with the 3-element 1D vector ‘other’, i.e., A x B.

	
det()

	Returns the determinant of the FracVector as a scalar FracVector.

	
dim

	This property returns a tuple with the dimensionality of each dimension of the FracVector
(the noms are assumed to be a nested list of rectangular shape).

	
dot(other)

	Returns the vector dot product of the 1D vector with the 1D vector ‘other’, i.e., A . B or A cdot B. The same as A * B.T().

	
exp(prec=None, limit=False)

	Return a FracVector where every element is the exponent of the element in the source FracVector.

prec = precision (should be set as a fraction)
limit = True requires the denominator to be smaller or equal to precision

	
classmethod eye(dims)

	Create a diagonal one-matrix with the given dimensions

	
flatten()

	Returns a FracVector that has been flattened out to a single rowvector

	
floor()

	Returns the integer that is equal to or just below the value stored in a scalar FracVector.

	
classmethod from_floats(l, resolution=4294967296)

	Create a FracVector from a (nested) list or tuple of floats. You can convert a numpy array with
this method if you use A.tolist()

resolution: the resolution used for interpreting the given floating point numbers. Default is 2^32.

	
classmethod from_tuple(t)

	Return a FracVector created from the tuple representation: (denom, …noms…), returned by the to_tuple() method.

	
ged_prestacked(other)

	

	
ged_stackedinsert(pos, other)

	

	
get_append(other)

	

	
get_extend(other)

	

	
get_insert(pos, other)

	

	
get_prepend(other)

	

	
get_prextend(other)

	

	
get_stacked(other)

	

	
inv()

	Returns the matrix inverse, A^-1

	
lengthsqr()

	Returns the square of the length of the vector. The same as A * A.T()

	
limit_denominator(max_denom=1000000000)

	Returns a FracVector of reduced resolution.

resolution: each element in the returned FracVector is the closest numerical approximation that can is allowed by
a fraction with maximally this denominator. Note: since all elements must be put on a common denominator, the result
may have a larger denominator than max_denom

	
max()

	Return the maximum element across all dimensions in the FracVector. max(fracvector) works for a 1D vector.

	
metric_product(vecA, vecB)

	
	Returns the result of the metric product using the present square FracVector as the metric matrix. The same as

	vecA*self*vecB.T().

	
min()

	Return the minimum element across all dimensions in the FracVector. max(fracvector) works for a 1D vector.

	
mul(other)

	Returns the result of multiplying the vector with ‘other’ using matrix multiplication.

Note that for two 1D FracVectors, A.dot(B) is not the same as A.mul(B), but rather: A.mul(B.T()).

	
nargmax()

	Return a list of indices of all maximum elements across all dimensions in the FracVector.

	
nargmin()

	Return a list of indices for all minimum elements across all dimensions in the FracVector.

	
static nested_map(op, *ls)

	Map an operator over a nested tuple. (i.e., the same as the built-in map(), but works recursively on a nested tuple)

	
static nested_map_fractions(op, *ls)

	Map an operator over a nested tuple, but checks every element for a method to_fractions()
and uses this to further convert objects into tuples of Fraction.

	
nom

	Returns the integer nominator of a scalar FracVector.

	
normalize()

	Add/remove an integer +/-N to each element to place it in the range [0,1)

	
normalize_half()

	Add/remove an integer +/-N to each element to place it in the range [-1/2,1/2)

	This is useful to find the shortest vector C between two points A, B in a space with periodic boundary conditions [0,1):

	C = (A-B).normalize_half()

	
classmethod pi(prec=Fraction(1, 1000000), limit=False)

	Create a scalar FracVector with a rational approximation of pi to precision prec.

	
classmethod random(dims, minnom=-100, maxnom=100, denom=100)

	Create a zero matrix with the given dimensions

	
reciprocal()

	

	
classmethod set_common_denom(A, B)

	Used internally to combine two different FracVectors.

Returns a tuple (A2,B2,denom) where A2 is numerically equal to A, and B2 is numerically equal to B, but A2 and B2 are both
set on the same shared denominator ‘denom’ which is the product of the denominator of A and B.

	
set_denominator(set_denom=1000000000)

	Returns a FracVector of reduced resolution where every element is the closest numerical approximation using this denominator.

	
sign()

	Returns the sign of the scalar FracVector: -1, 0 or 1.

	
simplify()

	Returns a reduced FracVector. I.e., each element has the same numerical value
but the new FracVector represents them using the smallest possible shared denominator.

	
sin(prec=None, degrees=False, limit=False)

	Return a FracVector where every element is the sine of the element in the source FracVector.

prec = precision (should be set as a fraction)
limit = True requires the denominator to be smaller or equal to precision

	
sqrt(prec=None, limit=False)

	Return a FracVector where every element is the sqrt of the element in the source FracVector.

prec = precision (should be set as a fraction)
limit = True requires the denominator to be smaller or equal to precision

	
classmethod stack_vecs(vecs)

	Optimized stacking of FracVectors.

vecs = a list (or tuple) of fracvectors.

Returns the same thing as:

FracVector.create(vecs)

but only works if all vectors share the same denominator (raises an exception if this is not true)

	
to_float()

	Converts a scalar ExactVector to a single float.

	
to_floats()

	Converts the ExactVector to a list of floats.

	
to_fraction()

	Converts scalar FracVector to a fraction.

	
to_fractions()

	Converts the FracVector to a list of fractions.

	
to_int()

	Converts scalar FracVector to an integer (truncating as necessary).

	
to_ints()

	Converts the FracVector to a list of integers, rounded off as best possible.

	
to_string(accuracy=8)

	Converts the ExactVector to a list of strings.

	
to_strings(accuracy=8)

	Converts the ExactVector to a list of strings.

	
to_tuple()

	Return a FracVector on tuple representation: (denom, …noms…).

	
classmethod use(old)

	Make sure variable is a FracVector, and if not, convert it.

	
validate()

	

	
classmethod zeros(dims)

	Create a zero matrix with the given dimensions

	
class httk.FracScalar(nom, denom)

	Bases: httk.core.vectors.fracvector.FracVector

Represents the fractional number nom/denom. This is a subclass of FracVector with the purpose of making
it clear when a scalar fracvector is needed/used.

	
classmethod create(nom, denom=None, simplify=True)

	Create a FracScalar.

	FracScalar(something)

	something may be any object that can be used in the constructor of the Python Fraction class
(also works with strings!).

	
class httk.MutableFracVector(noms, denom)

	Bases: httk.core.vectors.fracvector.FracVector, httk.core.vectors.vector.MutableVector

Same as FracVector, only, this version allow assignment of elements, e.g.,

mfracvec[2,7] = 5

and, e.g.,

mfracvec[:,7] = [1,2,3,4]

Other than this, the FracVector methods exist and do the same, i.e., they return copies of the fracvector, rather
than modifying it.

However, methods have also been added named with set_* prefixes which performs mutating operations, e.g.,

A.set_T()

replaces A with its own transpose, whereas

A.T()

just returns a new MutableFracVector that is the transpose of A, leaving A unmodified.

	
classmethod from_FracVector(other)

	Create a MutableFracVector from a FracVector.

	
invalidate()

	Internal method to call when MutableFracVector is changed in such a way that cached properties
are invalidated (e.g., _dim)

	
static nested_inmap(op, *ls)

	Like inmap, but work for nested lists

	
static nested_map(op, *ls)

	Map an operator over a nested list. (i.e., the same as the built-in map(), but works recursively on a nested list)

	
static nested_map_fractions(op, *ls)

	Map an operator over a nested list, but checks every element for a method to_fractions()
and uses this to further convert objects into lists of Fraction.

	
set_T()

	Changes MutableFracVector inline into own transpose: self -> self.T

	
set_inv()

	Changes MutableFracVector inline into own inverse: self -> self^-1

	
set_negative()

	Changes MutableFracVector inline into own negative: self -> -self

	
set_normalize()

	Add/remove an integer +/-N to each element to place it in the range [0,1)

	
set_normalize_half()

	Add/remove an integer +/-N to each element to place it in the range [-1/2,1/2)

	This is useful to find the shortest vector C between two points A, B in a space with periodic boundary conditions [0,1):

	C = (A-B).normalize_half()

	
set_set_denominator(resolution=1000000000)

	Changes MutableFracVector; reduces resolution.

resolution is the new denominator, each element becomes the closest numerical approximation using this denominator.

	
set_simplify()

	Changes MutableFracVector; reduces any common factor between denominator and all nominators

	
to_FracVector()

	Return a FracVector with the values of this MutableFracVector.

	
classmethod use(old)

	Make sure variable is a MutableFracVector, and if not, convert it.

	
validate()

	

	
class httk.IoAdapterFileReader(f, name=None, deletefilename=None, close=False)

	Bases: object

Io adapter for easy handling of io.

	
close()

	

	
classmethod use(other)

	

	
class httk.IoAdapterFileWriter(f, name=None, close=False)

	Bases: object

Io adapter for access to data as a python file object

	
close()

	

	
classmethod use(other)

	

	
class httk.IoAdapterFileAppender(f, name=None)

	Bases: object

Io adapter for access to data as a python file object

	
close()

	

	
classmethod use(other)

	

	
class httk.IoAdapterString(string=None, name=None)

	Bases: object

Universal io adapter, helps handling the passing of filenames, files, and strings to functions that deal with io

	
close()

	

	
string

	

	
classmethod use(other)

	

	
class httk.IoAdapterStringList(stringlist, name=None)

	Bases: object

Universal io adapter, helps handling the passing of filenames, files, and strings to functions that deal with io

	
classmethod use(other)

	

	
class httk.IoAdapterStringList(stringlist, name=None)

	Bases: object

Universal io adapter, helps handling the passing of filenames, files, and strings to functions that deal with io

	
classmethod use(other)

	

	
class httk.HttkObject

	Bases: object

	
get_codependent_data()

	

	
hexhash

	

	
classmethod new_from(other)

	

	
to(newtype)

	

	
to_tuple(use_hexhash=False)

	

	
classmethod types()

	

	
classmethod use(old)

	

	
httk.httk_typed_property(t)

	

	
httk.httk_typed_init(t, **kargs)

	

	
httk.httk_typed_property_delayed(t)

	

	
httk.httk_typed_init_delayed(t, **kargs)

	

	
class httk.HttkPluginWrapper(plugin=None)

	Bases: object

	
class httk.HttkPlugin

	Bases: object

	
class httk.HttkPluginPlaceholder(plugininfo=None)

	Bases: object

	
class httk.Signature(signature_data, key)

	Bases: httk.core.httkobject.HttkObject

	
classmethod create(signature_data, key)

	Create a Computation object.

	
class httk.SignatureKey(keydata, description)

	Bases: httk.core.httkobject.HttkObject

	
classmethod create(keydata, description)

	Create a Computation object.

Subpackages

	httk.analysis package
	Subpackages
	httk.analysis.matsci package
	Subpackages
	httk.analysis.matsci.vis package
	Submodules
	httk.analysis.matsci.vis.matplotlibphasediagramvisualizer module

	httk.analysis.matsci.vis.phasediagramvisualizerplugin module

	Submodules
	httk.analysis.matsci.phasediagram module

	httk.atomistic package
	Subpackages
	httk.atomistic.atomisticio package
	Submodules
	httk.atomistic.atomisticio.structure_cif_io module

	httk.atomistic.atomisticio.structure_io module

	httk.atomistic.atomisticio.structureioplugin module

	httk.atomistic.data package
	Submodules
	httk.atomistic.data.periodictable module

	httk.atomistic.data.spacegroups module

	httk.atomistic.results package
	Submodules
	httk.atomistic.results.relaxedcellresult module

	httk.atomistic.results.totalenergyresult module

	httk.atomistic.vis package
	Submodules
	httk.atomistic.vis.asestructurevisualizer module

	httk.atomistic.vis.jmolstructurevisualizer module

	httk.atomistic.vis.structurephasediagramvisualizerplugin module

	httk.atomistic.vis.structurevisualizerplugin module

	Submodules
	httk.atomistic.assignment module

	httk.atomistic.assignments module

	httk.atomistic.cell module

	httk.atomistic.cellshape module

	httk.atomistic.cellutils module

	httk.atomistic.cli module

	httk.atomistic.compound module

	httk.atomistic.formulautils module

	httk.atomistic.representativesites module

	httk.atomistic.representativestructure module

	httk.atomistic.siteassignment module

	httk.atomistic.sites module

	httk.atomistic.sitesutils module

	httk.atomistic.spacegroup module

	httk.atomistic.spacegrouputils module

	httk.atomistic.structure module

	httk.atomistic.structurephasediagram module

	httk.atomistic.structureutils module

	httk.atomistic.supercellutils module

	httk.atomistic.unitcellsites module

	httk.atomistic.unitcellstructure module

	httk.config package
	Submodules
	httk.config.config module

	httk.core package
	Subpackages
	httk.core.vectors package
	Submodules
	httk.core.vectors.fracmath module

	httk.core.vectors.fracvector module

	httk.core.vectors.mutablefracvector module

	httk.core.vectors.vector module

	httk.core.vectors.vectormath module

	Submodules
	httk.core.basic module

	httk.core.citation module

	httk.core.code module

	httk.core.computation module

	httk.core.console module

	httk.core.crypto module

	httk.core.ed25519 module

	httk.core.geometry module

	httk.core.httkobject module

	httk.core.ioadapters module

	httk.core.miniparser module
	LR(1) miniparser
	Introduction

	Detailed description

	Diagnostic output

	httk.core.project module

	httk.core.reference module

	httk.core.signature module

	httk.core.template module

	httk.db package
	Subpackages
	httk.db.backend package
	Submodules
	httk.db.backend.sqlite module

	httk.db.store package
	Submodules
	httk.db.store.dictstore module

	httk.db.store.sqlstore module

	httk.db.store.trivialstore module

	Submodules
	httk.db.filteredcollection module

	httk.db.httkobjdbplugin module

	httk.db.storable module

	httk.external package
	Submodules
	httk.external.aflow_ext module

	httk.external.ase_glue module

	httk.external.cif2cell_ext module

	httk.external.command module

	httk.external.gulp_ext module

	httk.external.isotropy_ext module

	httk.external.jmol module

	httk.external.numpy_ext module

	httk.external.platon_ext module

	httk.external.pymatgen_glue module

	httk.external.pyspglib_ext module

	httk.external.subimport module

	httk.graphics package
	Subpackages
	httk.graphics.matplotlib package
	Submodules
	httk.graphics.matplotlib.arrowplot module

	httk.graphics.matplotlib.polygonplot module

	httk.httkio package
	Submodules
	httk.httkio.cif module

	httk.httkio.load module

	httk.httkio.save module

	httk.httkweb package
	Submodules
	httk.httkweb.app_curses module

	httk.httkweb.app_qt5 module

	httk.httkweb.functionhandler_httk module

	httk.httkweb.helpers module

	httk.httkweb.jsonapi module

	httk.httkweb.publish module

	httk.httkweb.render_httk module

	httk.httkweb.render_rst module

	httk.httkweb.serve module

	httk.httkweb.templateengine_httk module

	httk.httkweb.templateengine_templator module

	httk.httkweb.webgenerator module

	httk.httkweb.webserver module

	httk.httkweb.wsgi module

	httk.iface package
	Submodules
	httk.iface.ase_if module

	httk.iface.cif2cell_if module

	httk.iface.gulp_if module

	httk.iface.isotropy_if module

	httk.iface.jmol_if module

	httk.iface.openbabel_if_notstable module

	httk.iface.platon_if module

	httk.iface.spglib_if module

	httk.iface.vasp_if module

	httk.optimade package
	Subpackages
	httk.optimade.validation package
	Submodules
	httk.optimade.validation.all module

	httk.optimade.validation.base_info module

	httk.optimade.validation.entry module

	httk.optimade.validation.exception module

	httk.optimade.validation.headers module

	httk.optimade.validation.request module

	httk.optimade.validation.response module

	Submodules
	httk.optimade.entry_endpoint module

	httk.optimade.error module

	httk.optimade.httk_entries module

	httk.optimade.httk_execute_query module

	httk.optimade.info_endpoint module

	httk.optimade.meta module

	httk.optimade.optimade_entries module

	httk.optimade.optimade_filter_to_httk module

	httk.optimade.parse_optimade_filter module

	httk.optimade.process module

	httk.optimade.serve module

	httk.optimade.validate module

	httk.optimade.versions module

	httk.task package
	Submodules
	httk.task.reader module

	httk.task.taskmgr module

Submodules

	httk.cli module

	httk.versioning module

 httk.analysis package

httk.analysis package

Subpackages

	httk.analysis.matsci package
	Subpackages
	httk.analysis.matsci.vis package
	Submodules
	httk.analysis.matsci.vis.matplotlibphasediagramvisualizer module

	httk.analysis.matsci.vis.phasediagramvisualizerplugin module

	Submodules
	httk.analysis.matsci.phasediagram module

 httk.analysis.matsci package

httk.analysis.matsci package

Subpackages

	httk.analysis.matsci.vis package
	Submodules
	httk.analysis.matsci.vis.matplotlibphasediagramvisualizer module

	httk.analysis.matsci.vis.phasediagramvisualizerplugin module

Submodules

	httk.analysis.matsci.phasediagram module

 httk.analysis.matsci.vis package

httk.analysis.matsci.vis package

Submodules

	httk.analysis.matsci.vis.matplotlibphasediagramvisualizer module

	httk.analysis.matsci.vis.phasediagramvisualizerplugin module

 httk.analysis.matsci.phasediagram module

httk.analysis.matsci.phasediagram module

	
class httk.analysis.matsci.phasediagram.PhaseDiagram

	Bases: object

	
add_phase(symbols, counts, id, energy)

	Handles energy=None, for a phase we don’t know the energy of.

	
competing_indices

	

	
coord_system

	

	
coords()

	

	
classmethod create()

	

	
hull_competing_indices

	

	
hull_competing_phase_lines()

	

	
hull_distances

	

	
hull_indices

	

	
hull_point_coords()

	

	
hull_points()

	

	
hull_to_interior_competing_phase_lines()

	

	
interior_competing_phase_lines()

	

	
interior_point_coords()

	

	
line_coords()

	

	
other_point_coords()

	

	
phase_lines

	

	
set_hull_data(hull_indices, competing_indices, hull_competing_indices, hull_distances, coord_system, phase_lines)

	

	
vis

	

 httk.atomistic package

httk.atomistic package

The httk.atomistic package

Classes and utilities for dealing with high-throughput calculations of atomistic systems.

	
class httk.atomistic.Structure(assignments, rc_sites=None, rc_cell=None, other_reps=None)

	Bases: httk.core.httkobject.HttkObject

A Structure represents N sites of, e.g., atoms or ions, in any periodic or non-periodic arrangement.
The structure object is meant to be immutable and assumes that no internal variables are changed after its creation.
All methods that ‘changes’ the object creates and returns a new, updated, structure object.

This is the general heavy weight structure object. For lightweight structure objects, use UnitcellStructure or
RepresentativeStructure.

Naming conventions in httk.atomistic:

	Structure cell type abbreviations:

	
	rc = Representative cell: only representative atoms are given inside the conventional cell.

	they need to be replicated by the symmetry elements.

	uc = Unit cell: any (imprecisely defined) unit cell (usually the unit cell used to define the structure

	if it was not done via a representative cell.) with all atoms inside.

pc = Primitive unit cell: a smallest possible unit cell (the standard one) with all atoms inside.

cc = Conventional unit cell: the high symmetry unit cell (rc) with all atoms inside.

	For cells:

	
	cell = an abstract name for any reasonable representation of a ‘cell’ that defines

	the basis vectors used for representing the structure. When a ‘cell’ is returned,
it is an object of type Cell

basis = a 3x3 sequence-type with (in rows) the three basis vectors (for a periodic system, defining the unit cell, and defines the unit of repetition for the periodic dimensions)

lengths_and_angles = (a,b,c,alpha,beta,gamma): the basis vector lengths and angles

niggli_matrix = ((v1*v1, v2*v2, v3*v3),(2*v2*v3, 2*v1*v3, 2*v2*v3)) where v1, v2, v3 are the vectors forming the basis

metric = ((v1*v1,v1*v2,v1*v3),(v2*v1,v2*v2,v2*v3),(v3*v1,v3*v2,v3*v3))

	For sites:

	
	These following prefixes are used to describe types of site specifications:

	representative cell/rc = only representative atoms are given, which are then to be
repeated by structure symmetry group to give all sites

unit cell/uc = all atoms in unitcell

reduced = coordinates given in cell vectors

cartesian = coordinates given as direct cartesian coordinates

	sites = used as an abstract name for any sensible representation of a list of coordinates and a cell,

	when a ‘sites’ is returned, it is an object of type Sites

counts = number of atoms of each type (one per entry in assignments)

coordgroups = coordinates represented as a 3-level-list of coordinates, e.g.
[[[0,0,0],[0.5,0.5,0.5]],[[0.25,0.25,0.25]]] where level-1 list = groups: one group for each equivalent atom

counts and coords = one list with the number of atoms of each type (one per entry in assignments)
and a 2-level list of coordinates.

	For assignments of atoms, etc. to sites:

	assignments = abstract name for any representation of assignment of atoms.
When returned, will be object of type Assignment.

atomic_numbers = a sequence of integers for the atomic number of each species

occupations = a sequence where the assignments are repeated for each coordinate as needed
(prefixed with uc or rc depending on which coordinates)

	For cell scaling:

	scaling = abstract name for any representation of cell scaling

scale = multiply all basis vectors with this number

volume = rescaling the cell such that it takes this volume

	For periodicity:

	periodicity = abstract name of a representation of periodicity

pbc = ‘periodic boundary conditions’ = sequence of True and False for which basis vectors are periodic / non-periodic

nonperiodic_vecs = integer, number of basis vectors, counted from the first, which are non-periodic

	For spacegroup:

	spacegroup = abstract name for any spacegroup representation. When returned, is of type Spacegroup.

hall_symbol = specifically the hall_symbol string representation of the spacegroup

	
add_ref(ref)

	

	
add_refs(refs)

	

	
add_tag(tag, val)

	

	
add_tags(tags)

	

	
anonymous_formula

	

	
anonymous_wyckoff_sequence

	

	
cc

	

	
cc_formula_parts

	

	
clean()

	

	
classmethod create(structure=None, assignments=None, rc_cell=None, rc_basis=None, rc_lengths=None, rc_angles=None, rc_cosangles=None, rc_niggli_matrix=None, rc_metric=None, rc_a=None, rc_b=None, rc_c=None, rc_alpha=None, rc_beta=None, rc_gamma=None, rc_sites=None, rc_reduced_coordgroups=None, rc_cartesian_coordgroups=None, rc_reduced_coords=None, rc_cartesian_coords=None, rc_reduced_occupationscoords=None, rc_cartesian_occupationscoords=None, rc_occupancies=None, rc_counts=None, wyckoff_symbols=None, multiplicities=None, spacegroup=None, hall_symbol=None, spacegroupnumber=None, setting=None, rc_scale=None, rc_scaling=None, rc_volume=None, uc_cell=None, uc_basis=None, uc_lengths=None, uc_angles=None, uc_cosangles=None, uc_niggli_matrix=None, uc_metric=None, uc_a=None, uc_b=None, uc_c=None, uc_alpha=None, uc_beta=None, uc_gamma=None, uc_sites=None, uc_reduced_coordgroups=None, uc_cartesian_coordgroups=None, uc_reduced_coords=None, uc_cartesian_coords=None, uc_reduced_occupationscoords=None, uc_cartesian_occupationscoords=None, uc_occupancies=None, uc_counts=None, uc_scale=None, uc_scaling=None, uc_volume=None, uc_is_primitive_cell=False, uc_is_conventional_cell=False, volume_per_atom=None, periodicity=None, nonperiodic_vecs=None, refs=None, tags=None)

	A Structure represents N sites of, e.g., atoms or ions, in any periodic or non-periodic arrangement.

This is a swiss-army-type constructor that allows a selection between a large number of optional arguments.

Note: if redundant and non-compatible information is given, the behavior is undefined. E.g., don’t try to call this
with a structure + a volume in hopes to get a copy with rescaled volume.

	To create a new structure, three primary components are:

	
	
	cell: defines the basis vectors in which reduced coordinates are expressed, and the

	unit of repetition (if the structure has any periodicity - see the ‘periodicity’ parameter)

	assignments: a list of ‘things’ (atoms, ions, etc.) that goes on the sites in the structure

	sites: a sensible representation of location / coordinates of the sites.

Note: rc_-prefixes are consistently enforced for any quantity that would be different in a UnitcellStructure. This is to
allow for painless change between the various structure-type objects without worrying about accidently using
the wrong type of sites object.

Input parameters:

	ONE OF: ‘cell’; ‘basis’, ‘length_and_angles’; ‘niggli_matrix’; ‘metric’; all of: a,b,c, alpha, beta, gamma.
(cell requires a Cell object or a very specific format, so unless you know what you are doing, use one of the others.)

	ONE OF: ‘assignments’, ‘atomic_numbers’, ‘occupancies’
(assignments requires an Assignments object or a sequence.), occupations repeats similar site assignments as needed

	ONE OF: ‘rc_sites’, ‘rc_coords’ (IF rc_occupations OR rc_counts are also given),
‘uc_coords’ (IF uc_occupations OR uc_counts are also given)
‘rc_B_C’, where B=reduced or cartesian, C=coordgroups, coords, or occupationscoords

Notes:

	occupationscoords may differ from coords by order, since giving occupations as, e.g., [‘H’,’O’,’H’] does not necessarily
have the same order of the coordinates as the format of counts+coords as (2,1), [‘H’,’O’].

	rc_sites and uc_sites requires a Sites object or a very specific format, so unless you know what you are doing,
use one of the others.)

	
	ONE OF: scale or volume:

	scale = multiply the basis vectors with this scaling factor,
volume = the representative (conventional) cell volume (overrides ‘scale’ if both are given)
volume_per_atom = cell volume / number of atoms

	ONE OF periodicity or nonperiodic_vecs

See help(Structure) for more information on the data format of all these data representations.

	
element_wyckoff_sequence

	

	
extended

	

	
extensions

	

	
find_symmetry()

	

	
formula

	

	
formula_counts

	

	
formula_spaceseparated

	

	
formula_symbols

	

	
get_refs()

	

	
get_tag(tag)

	

	
get_tags()

	

	
hall_symbol

	

	
has_rc_repr

	Returns True if the structure already contains the representative coordinates + spacegroup, and thus can be queried for this data
without launching an expensive symmetry finder operation.

	
has_uc_repr

	Returns True if the structure contains any unit cell-type coordinate representation, and thus can be queried for this data
without launching a somewhat expensive cell filling operation.

	
io

	

	
number_of_elements

	

	
pbc

	

	
pc

	

	
pc_a

	

	
pc_alpha

	

	
pc_b

	

	
pc_beta

	

	
pc_c

	

	
pc_counts

	

	
pc_formula_parts

	

	
pc_gamma

	

	
pc_nbr_atoms

	

	
pc_volume

	

	
rc

	

	
rc_a

	

	
rc_alpha

	

	
rc_b

	

	
rc_basis

	

	
rc_beta

	

	
rc_c

	

	
rc_cartesian_coordgroups

	

	
rc_cartesian_coords

	

	
rc_cartesian_occupationscoords

	

	
rc_cell_orientation

	

	
rc_counts

	

	
rc_gamma

	

	
rc_lengths_and_angles

	

	
rc_nbr_atoms

	

	
rc_occupancies

	

	
rc_occupationssymbols

	

	
rc_reduced_coordgroups

	

	
rc_reduced_coords

	

	
rc_volume

	

	
spacegroup

	

	
spacegroup_number

	

	
spacegroup_number_and_setting

	

	
supercell

	

	
symbols

	

	
tidy()

	

	
transform(matrix, max_search_cells=20, max_atoms=1000)

	

	
uc

	

	
uc_a

	

	
uc_alpha

	

	
uc_b

	

	
uc_basis

	

	
uc_beta

	

	
uc_c

	

	
uc_cartesian_coordgroups

	

	
uc_cartesian_coords

	

	
uc_cartesian_occupationscoords

	

	
uc_cell

	

	
uc_cell_orientation

	

	
uc_counts

	

	
uc_formula

	

	
uc_formula_counts

	

	
uc_formula_parts

	

	
uc_formula_symbols

	

	
uc_gamma

	

	
uc_lengths_and_angles

	

	
uc_nbr_atoms

	

	
uc_occupancies

	

	
uc_occupationssymbols

	

	
uc_reduced_coordgroups

	

	
uc_reduced_coords

	

	
uc_reduced_occupationscoords

	

	
uc_sites

	

	
uc_volume

	

	
classmethod use(other)

	

	
volume_per_atom

	

	
wyckoff_sequence

	

	
class httk.atomistic.Cell(basis, lattice_system, orientation=1)

	Bases: httk.core.httkobject.HttkObject

Represents a cell (e.g., a unitcell, but also possibly just the basis vectors of a non-periodic system)

(The ability to represent the cell for a non-periodic system is also the reason this class is not called Lattice.)

	
clean()

	

	
coordgroups_cartesian_to_reduced(coordgroups)

	

	
coordgroups_reduced_to_cartesian(coordgroups)

	

	
coords_cartesian_to_reduced(coords)

	

	
coords_reduced_to_cartesian(coords)

	

	
classmethod create(cell=None, basis=None, metric=None, niggli_matrix=None, a=None, b=None, c=None, alpha=None, beta=None, gamma=None, lengths=None, angles=None, cosangles=None, scale=None, scaling=None, volume=None, periodicity=None, nonperiodic_vecs=None, orientation=1, hall=None, lattice_system=None, eps=0)

	Create a new cell object,

cell: any one of the following:

	a 3x3 array with (in rows) the three basis vectors of the cell (a non-periodic system should conventionally use an identity matrix)

	a dict with a single key ‘niggli_matrix’ with a 3x2 array with the Niggli Matrix representation of the cell

	a dict with 6 keys, ‘a’, ‘b’, ‘c’, ‘alpha’, ‘beta’, ‘gamma’ giving the cell parameters as floats

	scaling: free form input parsed for a scale.

	positive value = multiply basis vectors by this value
negative value = rescale basis vectors so that cell volume becomes abs(value).

scale: set to non-None to multiply all cell vectors with this factor

volume: set to non-None if the basis vectors only give directions, and the volume of the cell should be this value (overrides scale)

	periodicity: free form input parsed for periodicity

	sequence: True/False for each basis vector being periodic
integer: number of non-periodic basis vectors

hall: giving the hall symbol makes it possible to determine the lattice system without numerical inaccuracy

lattice_system: any one of: ‘cubic’, ‘hexagonal’, ‘tetragonal’, ‘orthorhombic’, ‘trigonal’, ‘triclinic’, ‘monoclinic’, ‘unknown’

	
get_axes_standard_order_transform()

	

	
get_normalized()

	

	
get_normalized_longestvec()

	

	
is_point_inside(cartesian_coord)

	

	
normalization_longestvec_scale

	Get the factor with which a normalized version of this cell needs to be multiplied to reproduce this cell.

I.e. self = (normalization_scale)*self.get_normalized()

	
normalization_scale

	

	
scaling()

	

	
classmethod use(other)

	

	
volume

	

	
class httk.atomistic.RepresentativeSites(reduced_coordgroups=None, cartesian_coordgroups=None, reduced_coords=None, cartesian_coords=None, counts=None, hall_symbol=None, pbc=None, wyckoff_symbols=None, multiplicities=None)

	Bases: httk.atomistic.sites.Sites

Represents any collection of sites in a unitcell

	
anonymous_wyckoff_sequence

	

	
clean()

	

	
classmethod create(sites=None, reduced_coordgroups=None, reduced_coords=None, counts=None, spacegroup=None, hall_symbol=None, spacegroupnumber=None, setting=None, periodicity=None, wyckoff_symbols=None, multiplicities=None, occupancies=None, pbc=None)

	Create a new sites object

	
crystal_system

	

	
get_uc_sites()

	

	
lattice_symbol

	

	
lattice_system

	

	
tidy()

	

	
total_number_of_atoms

	

	
wyckoff_sequence

	

	
class httk.atomistic.UnitcellSites(reduced_coordgroups=None, reduced_coords=None, counts=None, hall_symbol='P 1', pbc=None)

	Bases: httk.atomistic.sites.Sites

Represents any collection of sites in a unitcell

	
total_number_of_atoms

	

	
class httk.atomistic.Assignments(siteassignments, extensions=[])

	Bases: httk.core.httkobject.HttkObject

Represents a possible vector of assignments

	
atomic_numbers

	

	
classmethod create(assignments=None)

	
Create a new assignment object,

	assignments: a list-style object with one entry per ‘atom type’. Any sensible type accepted, most notably,

	integers (for atom number)

	
extended

	

	
ratios

	

	
ratioslist

	

	
symbollists

	

	
symbols

	

	
to_basis()

	

	
classmethod use(old)

	

	
class httk.atomistic.Compound(element_wyckoff_sequence, formula, spacegroup_number, extended, extensions, wyckoff_sequence, anonymous_wyckoff_sequence, anonymous_formula, formula_symbols, formula_counts, pbc)

	Bases: httk.core.httkobject.HttkObject

	
add_name(name)

	

	
add_names(names)

	

	
add_ref(ref)

	

	
add_refs(refs)

	

	
add_tag(tag, val)

	

	
add_tags(tags)

	

	
anonymous_formula

	

	
anonymous_wyckoff_sequence

	

	
classmethod create(base_on_structure=None, lift_tags=True, lift_refs=True)

	struct: Structure object which forms the basis of this object

	
formula_counts

	

	
formula_symbols

	

	
get_names()

	

	
get_refs()

	

	
get_tag(tag)

	

	
get_tags()

	

	
number_of_elements

	

	
wyckoff_sequence

	

	
class httk.atomistic.CompoundStructure(compound, structure)

	Bases: httk.core.httkobject.HttkObject

	
classmethod create(compound, structure)

	

	
class httk.atomistic.StructurePhaseDiagram(structures, energies, hull_indices, competing_indices, hull_competing_indices, hull_distances, coord_system, phase_lines)

	Bases: httk.core.httkobject.HttkObject

Represents a phase diagram of structures

	
classmethod create(structures, energies)

	

	
get_phasediagram()

	

	
class httk.atomistic.StructureRef(structure, reference)

	Bases: httk.core.httkobject.HttkObject

	
class httk.atomistic.StructureTag(structure, tag, value)

	Bases: httk.core.httkobject.HttkObject

	
class httk.atomistic.CompoundTag(compound, tag, value)

	Bases: httk.core.httkobject.HttkObject

	
class httk.atomistic.CompoundRef(compound, reference)

	Bases: httk.core.httkobject.HttkObject

	
class httk.atomistic.UnitcellStructure(assignments=None, uc_sites=None, uc_cell=None)

	Bases: httk.core.httkobject.HttkObject

A UnitcellStructure represents N sites of, e.g., atoms or ions, in any periodic or non-periodic arrangement.
It keeps track of all the copies of the atoms within a unitcell.

The structure object is meant to be immutable and assumes that no internal variables are changed after its creation.
All methods that ‘changes’ the object creates and returns a new, updated, structure object.

Naming conventions in httk.atomistic:

	For cells:

	
	cell = an abstract name for any reasonable representation of a ‘cell’ that defines

	the basis vectors used for representing the structure. When a ‘cell’ is returned,
it is an object of type Cell

basis = a 3x3 sequence-type with (in rows) the three basis vectors (for a periodic system, defining the unit cell, and defines the unit of repetition for the periodic dimensions)

lengths_and_angles = (a,b,c,alpha,beta,gamma): the basis vector lengths and angles

niggli_matrix = ((v1*v1, v2*v2, v3*v3),(2*v2*v3, 2*v1*v3, 2*v2*v3)) where v1, v2, v3 are the vectors forming the basis

metric = ((v1*v1,v1*v2,v1*v3),(v2*v1,v2*v2,v2*v3),(v3*v1,v3*v2,v3*v3))

	For sites:

	
	These following prefixes are used to describe types of site specifications:

	representative cell/rc = only representative atoms are given, which are then to be
repeated by structure symmetry group to give all sites

unit cell/uc = all atoms in unitcell

reduced = coordinates given in cell vectors

cartesian = coordinates given as direct cartesian coordinates

	sites = used as an abstract name for any sensible representation of a list of coordinates and a cell,

	when a ‘sites’ is returned, it is an object of type Sites

counts = number of atoms of each type (one per entry in assignments)

coordgroups = coordinates represented as a 3-level-list of coordinates, e.g.
[[[0,0,0],[0.5,0.5,0.5]],[[0.25,0.25,0.25]]] where level-1 list = groups: one group for each equivalent atom

counts and coords = one list with the number of atoms of each type (one per entry in assignments)
and a 2-level list of coordinates.

	For assignments of atoms, etc. to sites:

	assignments = abstract name for any representation of assignment of atoms.
When returned, will be object of type Assignment.

atomic_numbers = a sequence of integers for the atomic number of each species

occupations = a sequence where the assignments are repeated for each coordinate as needed
(prefixed with uc or rc depending on which coordinates)

	For cell scaling:

	scaling = abstract name for any representation of cell scaling

scale = multiply all basis vectors with this number

volume = rescaling the cell such that it takes this volume

	For periodicity:

	periodicity = abstract name of a representation of periodicity

pbc = ‘periodic boundary conditions’ = sequence of True and False for which basis vectors are periodic / non-periodic

nonperiodic_vecs = integer, number of basis vectors, counted from the first, which are non-periodic

	For spacegroup:

	spacegroup = abstract name for any spacegroup representation. When returned, is of type Spacegroup.

hall_symbol = specifically the hall_symbol string representation of the spacegroup

	
classmethod create(structure=None, uc_cell=None, uc_basis=None, uc_lengths=None, uc_angles=None, uc_niggli_matrix=None, uc_metric=None, uc_a=None, uc_b=None, uc_c=None, uc_alpha=None, uc_beta=None, uc_gamma=None, uc_sites=None, uc_reduced_coordgroups=None, uc_cartesian_coordgroups=None, uc_reduced_coords=None, uc_cartesian_coords=None, uc_reduced_occupationscoords=None, uc_cartesian_occupationscoords=None, uc_occupancies=None, uc_counts=None, uc_scale=None, uc_scaling=None, uc_volume=None, volume_per_atom=None, assignments=None, periodicity=None, nonperiodic_vecs=None, other_reps=None, refs=None, tags=None)

	A FullStructure represents N sites of, e.g., atoms or ions, in any periodic or non-periodic arrangement, where the positions
of all cites are given (as opposed to a set of unique sites + symmetry operations).

This is a swiss-army-type constructor that allows several different ways to create a FullStructure object.

To create a new structure, three primary components are:

	cell: defines the basis vectors in which reduced coordinates are expressed, and the
unit of repetition (if the structure has any periodicity - see the ‘periodicity’ parameter)

	assignments: a list of ‘things’ (atoms, ions, etc.) that goes on the sites in the structure

	sites: a sensible representation of location / coordinates of the sites.

Note: uc_-prefixes are consistently enforced for any quantity that would be different in a UniqueSitesStructure. This is to
allow for painless change between the various structure-type objects without worrying about accidently using
the wrong type of sites object.

Note: see help(Structure) for parameter naming conventions, i.e., what type of object is expected given a parameter name.

Input parameters:

	ONE OF: ‘uc_cell’; ‘uc_basis’, ‘uc_length_and_angles’; ‘uc_niggli_matrix’; ‘uc_metric’;
all of: uc_a,uc_b,uc_c, uc_alpha, uc_beta, uc_gamma.
(cell requires a Cell object or a very specific format, so unless you know what you are doing, use one of the others.)

	ONE OF: ‘uc_assignments’, ‘uc_atomic_numbers’, ‘uc_occupations’
(uc_assignments requires an Assignments object or a sequence.), uc_occupations repeats similar site assignments as needed

	ONE OF: ‘uc_sites’, ‘uc_coords’ (IF uc_occupations OR uc_counts are also given), or
‘uc_B_C’, where B=reduced or cartesian, C=coordgroups, coords, or occupationscoords

Notes:

	occupationscoords may differ from coords by order, since giving occupations as, e.g., [‘H’,’O’,’H’] does not necessarily
have the same order of the coordinates as the format of counts+coords as (2,1), [‘H’,’O’].

	uc_sites requires a Sites object or a python list on a very specific format, (so unless you know what you are doing,
use one of the others.)

	
	ONE OF: uc_scale, uc_volume, or volume_per_atom:

	scale = multiply the basis vectors with this scaling factor,
volume = the unit cell volume (overrides ‘scale’ if both are given)
volume_per_atom = cell volume / number of atoms

	ONE OF periodicity or nonperiodic_vecs

	
formula_builder

	

	
pbc

	

	
supercell

	

	
transform(matrix, max_search_cells=20, max_atoms=1000)

	

	
uc_a

	

	
uc_alpha

	

	
uc_b

	

	
uc_basis

	

	
uc_beta

	

	
uc_c

	

	
uc_cartesian_coordgroups

	

	
uc_cartesian_coords

	

	
uc_cartesian_occupationscoords

	

	
uc_cell_orientation

	

	
uc_counts

	

	
uc_gamma

	

	
uc_lengths_and_angles

	

	
uc_reduced_coordgroups

	

	
uc_reduced_coords

	

	
uc_volume

	

	
uc_volume_per_atom

	

	
classmethod use(other)

	

	
class httk.atomistic.RepresentativeStructure(assignments, rc_sites=None, rc_cell=None)

	Bases: httk.core.httkobject.HttkObject

A RepresentativeStructure represents N sites of, e.g., atoms or ions, in any periodic or non-periodic arrangement.
It keeps track of a set of representative atoms in a unit cell (the conventional cell) and the symmetry group / operations
that are to be applied to them to get all atoms.

This is meant to be a light-weight Structure object. For a heavy-weight with more functionality, use Structure.

The RepresentativeStructure object is meant to be immutable and assumes that no internal variables are changed after its creation.
All methods that ‘changes’ the object creates and returns a new, updated, structure object.

	
clean()

	

	
classmethod create(structure=None, rc_cell=None, rc_basis=None, rc_lengths=None, rc_angles=None, rc_niggli_matrix=None, rc_metric=None, rc_a=None, rc_b=None, rc_c=None, rc_alpha=None, rc_beta=None, rc_gamma=None, rc_sites=None, rc_reduced_coordgroups=None, rc_cartesian_coordgroups=None, rc_reduced_coords=None, rc_cartesian_coords=None, rc_reduced_occupationscoords=None, rc_cartesian_occupationscoords=None, rc_occupancies=None, rc_counts=None, wyckoff_symbols=None, multiplicities=None, spacegroup=None, hall_symbol=None, spacegroupnumber=None, setting=None, rc_scale=None, rc_scaling=None, rc_volume=None, vol_per_atom=None, assignments=None, periodicity=None, nonperiodic_vecs=None, refs=None, tags=None)

	A Structure represents N sites of, e.g., atoms or ions, in any periodic or non-periodic arrangement.

This is a swiss-army-type constructor that allows a selection between a large number of optional arguments.

	To create a new structure, three primary components are:

	
	
	cell: defines the basis vectors in which reduced coordinates are expressed, and the

	unit of repetition (if the structure has any periodicity - see the ‘periodicity’ parameter)

	assignments: a list of ‘things’ (atoms, ions, etc.) that goes on the sites in the structure

	sites: a sensible representation of location / coordinates of the sites.

Note: rc_-prefixes are consistently enforced for any quantity that would be different in a UnitcellStructure. This is to
allow for painless change between the various structure-type objects without worrying about accidently using
the wrong type of sites object.

Input parameters:

	ONE OF: ‘cell’; ‘basis’, ‘length_and_angles’; ‘niggli_matrix’; ‘metric’; all of: a,b,c, alpha, beta, gamma.
(cell requires a Cell object or a very specific format, so unless you know what you are doing, use one of the others.)

	ONE OF: ‘assignments’, ‘atomic_numbers’, ‘occupancies’
(assignments requires an Assignments object or a sequence.), occupations repeats similar site assignments as needed

	ONE OF: ‘rc_sites’, ‘rc_coords’ (IF rc_occupations OR rc_counts are also given),
‘uc_coords’ (IF uc_occupations OR uc_counts are also given)
‘rc_B_C’, where B=reduced or cartesian, C=coordgroups, coords, or occupationscoords

Notes:

	occupationscoords may differ from coords by order, since giving occupations as, e.g., [‘H’,’O’,’H’] does not necessarily
have the same order of the coordinates as the format of counts+coords as (2,1), [‘H’,’O’].

	rc_sites and uc_sites requires a Sites object or a very specific format, so unless you know what you are doing,
use one of the others.)

	
	ONE OF: scale or volume:

	scale = multiply the basis vectors with this scaling factor,
volume = the representative (conventional) cell volume (overrides ‘scale’ if both are given)
volume_per_atom = cell volume / number of atoms

	ONE OF periodicity or nonperiodic_vecs

See help(Structure) for more information on the data format of all these data representations.

	
formula_builder

	

	
pbc

	

	
rc_a

	

	
rc_alpha

	

	
rc_b

	

	
rc_basis

	

	
rc_beta

	

	
rc_c

	

	
rc_cartesian_coordgroups

	

	
rc_cartesian_coords

	

	
rc_cartesian_occupationscoords

	

	
rc_cell_orientation

	

	
rc_gamma

	

	
rc_lengths_and_angles

	

	
rc_volume

	

	
uc_volume_per_atom

	

	
classmethod use(other)

	

Subpackages

	httk.atomistic.atomisticio package
	Submodules
	httk.atomistic.atomisticio.structure_cif_io module

	httk.atomistic.atomisticio.structure_io module

	httk.atomistic.atomisticio.structureioplugin module

	httk.atomistic.data package
	Submodules
	httk.atomistic.data.periodictable module

	httk.atomistic.data.spacegroups module

	httk.atomistic.results package
	Submodules
	httk.atomistic.results.relaxedcellresult module

	httk.atomistic.results.totalenergyresult module

	httk.atomistic.vis package
	Submodules
	httk.atomistic.vis.asestructurevisualizer module

	httk.atomistic.vis.jmolstructurevisualizer module

	httk.atomistic.vis.structurephasediagramvisualizerplugin module

	httk.atomistic.vis.structurevisualizerplugin module

Submodules

	httk.atomistic.assignment module

	httk.atomistic.assignments module

	httk.atomistic.cell module

	httk.atomistic.cellshape module

	httk.atomistic.cellutils module

	httk.atomistic.cli module

	httk.atomistic.compound module

	httk.atomistic.formulautils module

	httk.atomistic.representativesites module

	httk.atomistic.representativestructure module

	httk.atomistic.siteassignment module

	httk.atomistic.sites module

	httk.atomistic.sitesutils module

	httk.atomistic.spacegroup module

	httk.atomistic.spacegrouputils module

	httk.atomistic.structure module

	httk.atomistic.structurephasediagram module

	httk.atomistic.structureutils module

	httk.atomistic.supercellutils module

	httk.atomistic.unitcellsites module

	httk.atomistic.unitcellstructure module

 httk.atomistic.atomisticio package

httk.atomistic.atomisticio package

Submodules

	httk.atomistic.atomisticio.structure_cif_io module

	httk.atomistic.atomisticio.structure_io module

	httk.atomistic.atomisticio.structureioplugin module

 httk.atomistic.atomisticio.structure_cif_io module

httk.atomistic.atomisticio.structure_cif_io module

	
httk.atomistic.atomisticio.structure_cif_io.cif_reader_httk_preprocessed(ioa)

	

	
httk.atomistic.atomisticio.structure_cif_io.cif_reader_that_can_only_read_isotropy_cif(ioa)

	

	
httk.atomistic.atomisticio.structure_cif_io.cif_to_struct(ioa, backends=['internal', 'cif2cell', 'ase', 'platon'])

	

	
httk.atomistic.atomisticio.structure_cif_io.cifdata_to_struct(cifdata, debug=False)

	

	
httk.atomistic.atomisticio.structure_cif_io.struct_to_cif(struct, ioa, backends=['httk'])

	

	
httk.atomistic.atomisticio.structure_cif_io.struct_to_cif_httk_simplified(struct, ioa, header=None, symops=True)

	

	
httk.atomistic.atomisticio.structure_cif_io.struct_to_cifdata(struct, entryid=None)

	

 httk.atomistic.atomisticio.structure_io module

httk.atomistic.atomisticio.structure_io module

	
httk.atomistic.atomisticio.structure_io.load_struct(ioa, ext=None, filename=None)

	Load structure data from a file into a Structure

	
httk.atomistic.atomisticio.structure_io.save_struct(struct, ioa, ext=None)

	Save structure data from a file into a Structure

 httk.atomistic.atomisticio.structureioplugin module

httk.atomistic.atomisticio.structureioplugin module

	
class httk.atomistic.atomisticio.structureioplugin.StructureIoPlugin

	Bases: httk.core.httkobject.HttkPlugin

	
classmethod load(ioa, ext=None, filename=None)

	

	
plugin_init(struct)

	

	
save(ioa, ext=None)

	

 httk.atomistic.data package

httk.atomistic.data package

Submodules

	httk.atomistic.data.periodictable module

	httk.atomistic.data.spacegroups module

 httk.atomistic.data.periodictable module

httk.atomistic.data.periodictable module

	
httk.atomistic.data.periodictable.atomic_number(parse)

	Helper function to produce an atomic symbol if you have some kind of identifier, but does not know what it is.

	
httk.atomistic.data.periodictable.atomic_number_isotope(parse)

	Helper function to produce an atomic symbol if you have some kind of identifier, but does not know what it is.

	
httk.atomistic.data.periodictable.atomic_symbol(parse)

	Helper function to produce an atomic symbol if you have some kind of identifier, but does not know what it is.

	
httk.atomistic.data.periodictable.most_common_mass(parse)

	

 httk.atomistic.data.spacegroups module

httk.atomistic.data.spacegroups module

	
httk.atomistic.data.spacegroups.find_index(parse)

	

	
httk.atomistic.data.spacegroups.get_proper_hm_symbol(parse)

	

	
httk.atomistic.data.spacegroups.spacegroup_get_hall(parse)

	

	
httk.atomistic.data.spacegroups.spacegroup_get_hm(parse)

	

	
httk.atomistic.data.spacegroups.spacegroup_get_number(parse)

	

	
httk.atomistic.data.spacegroups.spacegroup_get_number_and_setting(parse)

	

	
httk.atomistic.data.spacegroups.spacegroup_get_number_of_settings(number)

	

	
httk.atomistic.data.spacegroups.spacegroup_get_schoenflies(parse)

	

 httk.atomistic.results package

httk.atomistic.results package

Submodules

	httk.atomistic.results.relaxedcellresult module

	httk.atomistic.results.totalenergyresult module

 httk.atomistic.results.relaxedcellresult module

httk.atomistic.results.relaxedcellresult module

	
class httk.atomistic.results.relaxedcellresult.Result_RelaxedCellResult(computation, compound, relaxed_structure, primitive_cell, volume_per_atom, minimum_energy)

	Bases: httk.core.computation.Result

 httk.atomistic.results.totalenergyresult module

httk.atomistic.results.totalenergyresult module

	
class httk.atomistic.results.totalenergyresult.Result_TotalEnergyResult(computation, structure, total_energy)

	Bases: httk.core.computation.Result

 httk.atomistic.vis package

httk.atomistic.vis package

Submodules

	httk.atomistic.vis.asestructurevisualizer module

	httk.atomistic.vis.jmolstructurevisualizer module

	httk.atomistic.vis.structurephasediagramvisualizerplugin module

	httk.atomistic.vis.structurevisualizerplugin module

 httk.atomistic.vis.asestructurevisualizer module

httk.atomistic.vis.asestructurevisualizer module

	
class httk.atomistic.vis.asestructurevisualizer.AseStructureVisualizer(struct, params={})

	Bases: object

	
show()

	

	
wait()

	

 httk.atomistic.vis.jmolstructurevisualizer module

httk.atomistic.vis.jmolstructurevisualizer module

	
class httk.atomistic.vis.jmolstructurevisualizer.JmolStructureVisualizer(struct, params={})

	Bases: object

	
bonds(on)

	

	
connections()

	

	
defaults_publish()

	

	
extbonds(on)

	

	
initialize()

	

	
polyhedra(on)

	

	
postconnect()

	

	
preconnect()

	

	
refresh()

	

	
repeat(repetitions)

	

	
rotate(angle)

	

	
save_and_quit(filename, resx=3200, resy=2500)

	

	
set_defaults()

	

	
show(repeat=None)

	

	
spin(on=True)

	

	
stop()

	

	
wait()

	

 httk.atomistic.vis.structurephasediagramvisualizerplugin module

httk.atomistic.vis.structurephasediagramvisualizerplugin module

	
class httk.atomistic.vis.structurephasediagramvisualizerplugin.StructurePhaseDiagramVisualizerPlugin

	Bases: httk.core.httkobject.HttkPlugin

	
plugin_init(structurephasediagram)

	

	
show(**params)

	

 httk.atomistic.vis.structurevisualizerplugin module

httk.atomistic.vis.structurevisualizerplugin module

	
class httk.atomistic.vis.structurevisualizerplugin.StructureVisualizerPlugin

	Bases: httk.core.httkobject.HttkPlugin

	
params()

	

	
plugin_init(struct)

	

	
show(params={}, backends=['jmol', 'ase'], debug=False)

	

	
wait()

	

 httk.atomistic.assignment module

httk.atomistic.assignment module

	
class httk.atomistic.assignment.Assignment(atomic_number, weight, ratio, magnetic_moment)

	Bases: httk.core.httkobject.HttkObject

Represents a possible vector of assignments

	
classmethod create(siteassignment=None, atom=None, weight=None, ratio=None, magnetic_moment=[None, None, None])

	
	Create a new siteassignment object

	site: integer for the site number that this atom is assigned to
atomic number or symbol

	
get_extensions()

	

	
get_weight()

	

	
symbol

	

	
classmethod use(old)

	

	
httk.atomistic.assignment.main()

	

 httk.atomistic.assignments module

httk.atomistic.assignments module

	
class httk.atomistic.assignments.Assignments(siteassignments, extensions=[])

	Bases: httk.core.httkobject.HttkObject

Represents a possible vector of assignments

	
atomic_numbers

	

	
classmethod create(assignments=None)

	
Create a new assignment object,

	assignments: a list-style object with one entry per ‘atom type’. Any sensible type accepted, most notably,

	integers (for atom number)

	
extended

	

	
ratios

	

	
ratioslist

	

	
symbollists

	

	
symbols

	

	
to_basis()

	

	
classmethod use(old)

	

	
httk.atomistic.assignments.main()

	

 httk.atomistic.cell module

httk.atomistic.cell module

	
class httk.atomistic.cell.Cell(basis, lattice_system, orientation=1)

	Bases: httk.core.httkobject.HttkObject

Represents a cell (e.g., a unitcell, but also possibly just the basis vectors of a non-periodic system)

(The ability to represent the cell for a non-periodic system is also the reason this class is not called Lattice.)

	
clean()

	

	
coordgroups_cartesian_to_reduced(coordgroups)

	

	
coordgroups_reduced_to_cartesian(coordgroups)

	

	
coords_cartesian_to_reduced(coords)

	

	
coords_reduced_to_cartesian(coords)

	

	
classmethod create(cell=None, basis=None, metric=None, niggli_matrix=None, a=None, b=None, c=None, alpha=None, beta=None, gamma=None, lengths=None, angles=None, cosangles=None, scale=None, scaling=None, volume=None, periodicity=None, nonperiodic_vecs=None, orientation=1, hall=None, lattice_system=None, eps=0)

	Create a new cell object,

cell: any one of the following:

	a 3x3 array with (in rows) the three basis vectors of the cell (a non-periodic system should conventionally use an identity matrix)

	a dict with a single key ‘niggli_matrix’ with a 3x2 array with the Niggli Matrix representation of the cell

	a dict with 6 keys, ‘a’, ‘b’, ‘c’, ‘alpha’, ‘beta’, ‘gamma’ giving the cell parameters as floats

	scaling: free form input parsed for a scale.

	positive value = multiply basis vectors by this value
negative value = rescale basis vectors so that cell volume becomes abs(value).

scale: set to non-None to multiply all cell vectors with this factor

volume: set to non-None if the basis vectors only give directions, and the volume of the cell should be this value (overrides scale)

	periodicity: free form input parsed for periodicity

	sequence: True/False for each basis vector being periodic
integer: number of non-periodic basis vectors

hall: giving the hall symbol makes it possible to determine the lattice system without numerical inaccuracy

lattice_system: any one of: ‘cubic’, ‘hexagonal’, ‘tetragonal’, ‘orthorhombic’, ‘trigonal’, ‘triclinic’, ‘monoclinic’, ‘unknown’

	
get_axes_standard_order_transform()

	

	
get_normalized()

	

	
get_normalized_longestvec()

	

	
is_point_inside(cartesian_coord)

	

	
normalization_longestvec_scale

	Get the factor with which a normalized version of this cell needs to be multiplied to reproduce this cell.

I.e. self = (normalization_scale)*self.get_normalized()

	
normalization_scale

	

	
scaling()

	

	
classmethod use(other)

	

	
volume

	

	
httk.atomistic.cell.main()

	

 httk.atomistic.cellshape module

httk.atomistic.cellshape module

	
class httk.atomistic.cellshape.CellShape(niggli_matrix, orientation=1, basis=None)

	Bases: httk.core.httkobject.HttkObject

Represents a cell (e.g., a unitcell, but also possibly just the basis vectors of a non-periodic system)

	
basis

	

	
clean()

	

	
coordgroups_cartesian_to_reduced(coordgroups)

	

	
coordgroups_reduced_to_cartesian(coordgroups)

	

	
coords_cartesian_to_reduced(coords)

	

	
coords_reduced_to_cartesian(coords)

	

	
classmethod create(cellshape=None, basis=None, metric=None, niggli_matrix=None, a=None, b=None, c=None, alpha=None, beta=None, gamma=None, lengths=None, angles=None, scale=None, scaling=None, volume=None, periodicity=None, nonperiodic_vecs=None, orientation=1)

	Create a new cell object,

cell: any one of the following:

	a 3x3 array with (in rows) the three basis vectors of the cell (a non-periodic system should conventionally use an identity matrix)

	a dict with a single key ‘niggli_matrix’ with a 3x2 array with the Niggli Matrix representation of the cell

	a dict with 6 keys, ‘a’, ‘b’, ‘c’, ‘alpha’, ‘beta’, ‘gamma’ giving the cell parameters as floats

	scaling: free form input parsed for a scale.

	positive value = multiply basis vectors by this value
negative value = rescale basis vectors so that cell volume becomes abs(value).

scale: set to non-None to multiply all cell vectors with this factor

volume: set to non-None if the basis vectors only give directions, and the volume of the cell should be this value (overrides scale)

	periodicity: free form input parsed for periodicity

	sequence: True/False for each basis vector being periodic
integer: number of non-periodic basis vectors

	
is_point_inside(cartesian_coord)

	

	
scaling()

	

	
httk.atomistic.cellshape.main()

	

 httk.atomistic.cellutils module

httk.atomistic.cellutils module

	
httk.atomistic.cellutils.angles_to_cosangles(angles)

	

	
httk.atomistic.cellutils.basis_determinant(basis)

	

	
httk.atomistic.cellutils.basis_to_niggli_and_orientation(basis)

	

	
httk.atomistic.cellutils.cell_to_basis(cell)

	

	
httk.atomistic.cellutils.get_primitive_to_conventional_basis_transform(basis, eps=0.0001)

	Figures out how the ‘likley’ transform of a primitive cell for getting to the conventional basis

This may not be foolproof, and mostly works for re-inverting cells generated by lengths_and_cosangles_to_conventional_basis.
(It should only be used when getting something that isn’t really the conventional cell does not equal catastrophic failure, just,
e.g., a non-optimal representation.)

	
httk.atomistic.cellutils.lattice_system_from_lengths_and_cosangles(lengths, cosangles, eps=0)

	Identifies lattice system from a list of cell axis lengths and cosine of angles between them
Returns string: ‘cubic’, ‘tetragonal’, ‘orthorombic’, ‘hexagonal’, ‘monoclinic’, ‘rhombohedral’ or ‘triclinic’

Note: if axis order is not the standard one (e.g., gamma=120 for hexagonal), the lattice system will come out as triclinic.
This way the outcome matches corresponding standard hall symbols, otherwise hall symbol and generated cells not technically match.

If you seek to re-order axes to the standard order, use standard_order_axes_transform on your basis matrix first.

	
httk.atomistic.cellutils.lattice_system_from_niggli(niggli_matrix, eps=0)

	Identifies lattice system from niggli matrix.
Returns string: ‘cubic’, ‘tetragonal’, ‘orthorombic’, ‘hexagonal’, ‘monoclinic’, ‘rhombohedral’ or ‘triclinic’

Note: if axis order is not the standard one (e.g., gamma=120 for hexagonal), the lattice system will come out as triclinic.
This way the outcome matches corresponding standard hall symbols, otherwise hall symbol and generated cells not technically match.

If you seek to re-order axes to the standard order, use standard_order_axes_transform on your basis matrix first.

	
httk.atomistic.cellutils.lengths_and_angles_to_niggli(lengths, angles)

	

	
httk.atomistic.cellutils.lengths_and_cosangles_to_conventional_basis(lengths, cosangles, lattice_system=None, orientation=1, eps=0)

	Returns the conventional cell basis given a list of lengths and cosine of angles

Note: if your basis vector order does not follow the conventions for hexagonal and monoclinic cells,
you get the triclinic conventional cell.

Conventions: in hexagonal cell gamma=120 degrees, i.e, cosangles[2]=-1/2, in monoclinic cells beta =/= 90 degrees.

	
httk.atomistic.cellutils.lengths_and_cosangles_to_niggli(lengths, cosangles)

	

	
httk.atomistic.cellutils.main()

	

	
httk.atomistic.cellutils.metric_to_niggli(cell)

	

	
httk.atomistic.cellutils.niggli_scale_to_vol(niggli_matrix, scale)

	

	
httk.atomistic.cellutils.niggli_to_basis(niggli_matrix, orientation=1)

	

	
httk.atomistic.cellutils.niggli_to_conventional_basis(niggli_matrix, lattice_system=None, orientation=1, eps=0.0001)

	Returns the conventional cell given a niggli_matrix

Note: if your basis vector order does not follow the conventions for hexagonal and monoclinic cells,
you get the triclinic conventional cell.

Conventions: in hexagonal cell gamma=120 degrees., in monoclinic cells beta =/= 90 degrees.

	
httk.atomistic.cellutils.niggli_to_lengths_and_angles(niggli_matrix)

	

	
httk.atomistic.cellutils.niggli_to_lengths_and_trigangles(niggli_matrix)

	

	
httk.atomistic.cellutils.niggli_to_metric(niggli)

	

	
httk.atomistic.cellutils.scale_to_vol(basis, scale)

	

	
httk.atomistic.cellutils.scaling_to_volume(basis, scaling)

	

	
httk.atomistic.cellutils.standard_order_axes_transform(niggli_matrix, lattice_system, eps=0, return_identity_if_no_transform_needed=False)

	Returns the transform that re-orders the axes to standard order for each possible lattice system.

Note: returns None if no transform is needed, to make it easy to skip the transform in that case.
If you want the identity matrix instead, set parameter return_identity_if_no_transform_needed = True,

	
httk.atomistic.cellutils.vol_to_scale(basis, vol)

	

 httk.atomistic.cli module

httk.atomistic.cli module

	
httk.atomistic.cli.main(commands, args)

	

 httk.atomistic.compound module

httk.atomistic.compound module

	
class httk.atomistic.compound.Compound(element_wyckoff_sequence, formula, spacegroup_number, extended, extensions, wyckoff_sequence, anonymous_wyckoff_sequence, anonymous_formula, formula_symbols, formula_counts, pbc)

	Bases: httk.core.httkobject.HttkObject

	
add_name(name)

	

	
add_names(names)

	

	
add_ref(ref)

	

	
add_refs(refs)

	

	
add_tag(tag, val)

	

	
add_tags(tags)

	

	
anonymous_formula

	

	
anonymous_wyckoff_sequence

	

	
classmethod create(base_on_structure=None, lift_tags=True, lift_refs=True)

	struct: Structure object which forms the basis of this object

	
formula_counts

	

	
formula_symbols

	

	
get_names()

	

	
get_refs()

	

	
get_tag(tag)

	

	
get_tags()

	

	
number_of_elements

	

	
wyckoff_sequence

	

	
class httk.atomistic.compound.CompoundName(compound, name)

	Bases: httk.core.httkobject.HttkObject

	
class httk.atomistic.compound.CompoundRef(compound, reference)

	Bases: httk.core.httkobject.HttkObject

	
class httk.atomistic.compound.CompoundStructure(compound, structure)

	Bases: httk.core.httkobject.HttkObject

	
classmethod create(compound, structure)

	

	
class httk.atomistic.compound.CompoundTag(compound, tag, value)

	Bases: httk.core.httkobject.HttkObject

	
class httk.atomistic.compound.ComputationRelatedCompound(computation, compound)

	Bases: httk.core.httkobject.HttkObject

	
classmethod create(computation, compound)

	

	
httk.atomistic.compound.main()

	

 httk.atomistic.formulautils module

httk.atomistic.formulautils module

	
class httk.atomistic.formulautils.StructureFormulaPlugin

	Bases: httk.core.httkobject.HttkPlugin

	
plugin_init(struct)

	

 httk.atomistic.representativesites module

httk.atomistic.representativesites module

	
class httk.atomistic.representativesites.RepresentativeSites(reduced_coordgroups=None, cartesian_coordgroups=None, reduced_coords=None, cartesian_coords=None, counts=None, hall_symbol=None, pbc=None, wyckoff_symbols=None, multiplicities=None)

	Bases: httk.atomistic.sites.Sites

Represents any collection of sites in a unitcell

	
anonymous_wyckoff_sequence

	

	
clean()

	

	
classmethod create(sites=None, reduced_coordgroups=None, reduced_coords=None, counts=None, spacegroup=None, hall_symbol=None, spacegroupnumber=None, setting=None, periodicity=None, wyckoff_symbols=None, multiplicities=None, occupancies=None, pbc=None)

	Create a new sites object

	
crystal_system

	

	
get_uc_sites()

	

	
lattice_symbol

	

	
lattice_system

	

	
tidy()

	

	
total_number_of_atoms

	

	
wyckoff_sequence

	

	
httk.atomistic.representativesites.main()

	

 httk.atomistic.representativestructure module

httk.atomistic.representativestructure module

	
class httk.atomistic.representativestructure.RepresentativeStructure(assignments, rc_sites=None, rc_cell=None)

	Bases: httk.core.httkobject.HttkObject

A RepresentativeStructure represents N sites of, e.g., atoms or ions, in any periodic or non-periodic arrangement.
It keeps track of a set of representative atoms in a unit cell (the conventional cell) and the symmetry group / operations
that are to be applied to them to get all atoms.

This is meant to be a light-weight Structure object. For a heavy-weight with more functionality, use Structure.

The RepresentativeStructure object is meant to be immutable and assumes that no internal variables are changed after its creation.
All methods that ‘changes’ the object creates and returns a new, updated, structure object.

	
clean()

	

	
classmethod create(structure=None, rc_cell=None, rc_basis=None, rc_lengths=None, rc_angles=None, rc_niggli_matrix=None, rc_metric=None, rc_a=None, rc_b=None, rc_c=None, rc_alpha=None, rc_beta=None, rc_gamma=None, rc_sites=None, rc_reduced_coordgroups=None, rc_cartesian_coordgroups=None, rc_reduced_coords=None, rc_cartesian_coords=None, rc_reduced_occupationscoords=None, rc_cartesian_occupationscoords=None, rc_occupancies=None, rc_counts=None, wyckoff_symbols=None, multiplicities=None, spacegroup=None, hall_symbol=None, spacegroupnumber=None, setting=None, rc_scale=None, rc_scaling=None, rc_volume=None, vol_per_atom=None, assignments=None, periodicity=None, nonperiodic_vecs=None, refs=None, tags=None)

	A Structure represents N sites of, e.g., atoms or ions, in any periodic or non-periodic arrangement.

This is a swiss-army-type constructor that allows a selection between a large number of optional arguments.

	To create a new structure, three primary components are:

	
	
	cell: defines the basis vectors in which reduced coordinates are expressed, and the

	unit of repetition (if the structure has any periodicity - see the ‘periodicity’ parameter)

	assignments: a list of ‘things’ (atoms, ions, etc.) that goes on the sites in the structure

	sites: a sensible representation of location / coordinates of the sites.

Note: rc_-prefixes are consistently enforced for any quantity that would be different in a UnitcellStructure. This is to
allow for painless change between the various structure-type objects without worrying about accidently using
the wrong type of sites object.

Input parameters:

	ONE OF: ‘cell’; ‘basis’, ‘length_and_angles’; ‘niggli_matrix’; ‘metric’; all of: a,b,c, alpha, beta, gamma.
(cell requires a Cell object or a very specific format, so unless you know what you are doing, use one of the others.)

	ONE OF: ‘assignments’, ‘atomic_numbers’, ‘occupancies’
(assignments requires an Assignments object or a sequence.), occupations repeats similar site assignments as needed

	ONE OF: ‘rc_sites’, ‘rc_coords’ (IF rc_occupations OR rc_counts are also given),
‘uc_coords’ (IF uc_occupations OR uc_counts are also given)
‘rc_B_C’, where B=reduced or cartesian, C=coordgroups, coords, or occupationscoords

Notes:

	occupationscoords may differ from coords by order, since giving occupations as, e.g., [‘H’,’O’,’H’] does not necessarily
have the same order of the coordinates as the format of counts+coords as (2,1), [‘H’,’O’].

	rc_sites and uc_sites requires a Sites object or a very specific format, so unless you know what you are doing,
use one of the others.)

	
	ONE OF: scale or volume:

	scale = multiply the basis vectors with this scaling factor,
volume = the representative (conventional) cell volume (overrides ‘scale’ if both are given)
volume_per_atom = cell volume / number of atoms

	ONE OF periodicity or nonperiodic_vecs

See help(Structure) for more information on the data format of all these data representations.

	
formula_builder

	

	
pbc

	

	
rc_a

	

	
rc_alpha

	

	
rc_b

	

	
rc_basis

	

	
rc_beta

	

	
rc_c

	

	
rc_cartesian_coordgroups

	

	
rc_cartesian_coords

	

	
rc_cartesian_occupationscoords

	

	
rc_cell_orientation

	

	
rc_gamma

	

	
rc_lengths_and_angles

	

	
rc_volume

	

	
uc_volume_per_atom

	

	
classmethod use(other)

	

	
httk.atomistic.representativestructure.main()

	

 httk.atomistic.siteassignment module

httk.atomistic.siteassignment module

	
class httk.atomistic.siteassignment.SiteAssignment(assignments)

	Bases: httk.core.httkobject.HttkObject

Represents a possible vector of assignments

	
atomic_number

	

	
atomic_numbers

	

	
classmethod create(assignments=None)

	
Create a new assignment object,

	assignments: a list-style object with one entry per ‘atom type’. Any sensible type accepted, most notably,

	integers (for atom number)

	
get_extensions()

	

	
ratio

	

	
ratios

	

	
symbol

	

	
symbols

	

	
to_basis()

	

	
classmethod use(old)

	

	
httk.atomistic.siteassignment.main()

	

 httk.atomistic.sites module

httk.atomistic.sites module

	
class httk.atomistic.sites.Sites(reduced_coordgroups=None, reduced_coords=None, counts=None, hall_symbol=None, pbc=None)

	Bases: httk.core.httkobject.HttkObject

Represents any collection of sites in a unitcell

	
anonymous_formula

	

	
clean()

	

	
coords_groupnumber

	

	
counts

	

	
classmethod create(sites=None, reduced_coordgroups=None, reduced_coords=None, counts=None, occupancies=None, spacegroup=None, hall_symbol=None, spacegroupnumber=None, setting=None, pbc=None, periodicity=None)

	Create a new sites object

	
get_cartesian_coordgroups(cell)

	

	
get_cartesian_coords(scale)

	

	
reduced_coordgroups

	

	
reduced_coords

	

	
total_number_of_atoms

	

	
classmethod use(old, cell=None, hall_symbol=None, periodicity=None)

	

	
httk.atomistic.sites.main()

	

 httk.atomistic.sitesutils module

httk.atomistic.sitesutils module

	
httk.atomistic.sitesutils.abstract_symbol(count)

	

	
httk.atomistic.sitesutils.anonymous_formula(filled_counts)

	

	
httk.atomistic.sitesutils.clean_coordgroups_and_assignments(coordgroups, assignments)

	

	
httk.atomistic.sitesutils.coordgroups_cartesian_to_reduced(coordgroups, basis)

	

	
httk.atomistic.sitesutils.coordgroups_reduced_to_cartesian(cell, coordgroups)

	

	
httk.atomistic.sitesutils.coordgroups_reduced_to_unitcell(coordgroups, hall_symbol, eps=Fraction(1, 1000))

	

	
httk.atomistic.sitesutils.coordgroups_to_coords(coordgroups)

	

	
httk.atomistic.sitesutils.coords_and_counts_to_coordgroups(coords, counts)

	

	
httk.atomistic.sitesutils.coords_and_occupancies_to_coordgroups_and_assignments(coords, occupancies)

	

	
httk.atomistic.sitesutils.coords_reduced_to_cartesian(cell, coords)

	

	
httk.atomistic.sitesutils.coords_to_coordgroups(coords, counts)

	

	
httk.atomistic.sitesutils.coordswap(fromidx, toidx, cell, coordgroups)

	

	
httk.atomistic.sitesutils.main()

	

	
httk.atomistic.sitesutils.normalized_formula_parts(assignments, ratios, counts)

	

	
httk.atomistic.sitesutils.pbc_to_nonperiodic_vecs(pbc)

	

	
httk.atomistic.sitesutils.periodicity_to_pbc(periodicity)

	

	
httk.atomistic.sitesutils.sites_tidy(sites, backends=['platon'])

	

	
httk.atomistic.sitesutils.sort_coordgroups(coordgroups, individual_data)

	

	
httk.atomistic.sitesutils.structure_reduced_coordgroups_to_representative(coordgroups, cell, spacegroup, backends=['isotropy'])

	

 httk.atomistic.spacegroup module

httk.atomistic.spacegroup module

	
class httk.atomistic.spacegroup.Spacegroup(hall_symbol)

	Bases: httk.core.httkobject.HttkObject

Represents a spacegroup

	
classmethod create(spacegroup=None, hall_symbol=None, hm_symbol=None, spacegroupnumber=None, setting=None, symops=None)

	Create a new spacegroup object,

Give ONE OF hall_symbol or spacegroup.

hall_symbol = a string giving the hall symbol of the spacegroup

	spacegroup = a spacegroup on any reasonable format that can be parsed, e.g.,

	an integer (spacegroup number)

setting = if only a spacegroup number is given, this allows also specifying a setting.

	
number

	

	
number_and_setting

	

	
httk.atomistic.spacegroup.main()

	

 httk.atomistic.spacegrouputils module

httk.atomistic.spacegrouputils module

	
httk.atomistic.spacegrouputils.check_symop(coordgroups, symopv)

	

	
httk.atomistic.spacegrouputils.crystal_system_from_hall(hall_symb)

	

	
httk.atomistic.spacegrouputils.crystal_system_from_spacegroupnbr(spacegroupnr)

	

	
httk.atomistic.spacegrouputils.filter_hm(hm, setting=None, halls=None)

	

	
httk.atomistic.spacegrouputils.filter_itcnbr_setting(itcnbr, setting=None, halls=None)

	

	
httk.atomistic.spacegrouputils.filter_sf(sf, halls=None)

	

	
httk.atomistic.spacegrouputils.filter_symops(symops, halls=None)

	

	
httk.atomistic.spacegrouputils.get_hall(hall)

	

	
httk.atomistic.spacegrouputils.get_hm_setting(hm, setting)

	

	
httk.atomistic.spacegrouputils.get_itcnbr_setting(itcnbr, setting)

	

	
httk.atomistic.spacegrouputils.get_nonstandard_hall(nonstd_hall)

	

	
httk.atomistic.spacegrouputils.get_symops(hall)

	

	
httk.atomistic.spacegrouputils.get_symops_strs(hall)

	

	
httk.atomistic.spacegrouputils.get_symopshash(hall)

	

	
httk.atomistic.spacegrouputils.lattice_symbol_from_hall(hall)

	

	
httk.atomistic.spacegrouputils.lattice_system_from_hall(hall)

	

	
httk.atomistic.spacegrouputils.lattice_type_from_hall(hall)

	

	
httk.atomistic.spacegrouputils.main()

	

	
httk.atomistic.spacegrouputils.reduce_by_symops(coordgroups, symopvs, hall_symbol)

	

	
httk.atomistic.spacegrouputils.spacegroup_filter(parse)

	

	
httk.atomistic.spacegrouputils.spacegroup_filter_specific(hall=None, hm=None, itcnbr=None, setting=None, symops=None, halls=None)

	

	
httk.atomistic.spacegrouputils.spacegroup_get_hall(parse)

	

	
httk.atomistic.spacegrouputils.spacegroup_get_hm(parse)

	

	
httk.atomistic.spacegrouputils.spacegroup_get_number(parse)

	

	
httk.atomistic.spacegrouputils.spacegroup_get_number_and_setting(parse)

	

	
httk.atomistic.spacegrouputils.spacegroup_get_schoenflies(parse)

	

	
httk.atomistic.spacegrouputils.spacegroup_parse(parse)

	

	
httk.atomistic.spacegrouputils.symopshash(symops)

	

	
httk.atomistic.spacegrouputils.symopsmatrix(symop)

	

	
httk.atomistic.spacegrouputils.symopstuple(symop, val_transform=<function val_to_tuple>)

	

	
httk.atomistic.spacegrouputils.trivial_symmetry_reduce(coordgroups)

	Looks for ‘trivial’ ways to reduce the coordinates in the given coordgroups by a standard set of symmetry operations.
This is not a symmetry finder (and it is not intended to be), but for a standard primitive cell taken from a standard
conventional cell, it reverses the primitive unit cell coordgroups into the symmetry reduced coordgroups.

	
httk.atomistic.spacegrouputils.val_to_tuple(val)

	

	
httk.atomistic.spacegrouputils.wyckoff_symbol_matcher(wyckoffs, coord)

	

 httk.atomistic.structure module

httk.atomistic.structure module

	
class httk.atomistic.structure.Structure(assignments, rc_sites=None, rc_cell=None, other_reps=None)

	Bases: httk.core.httkobject.HttkObject

A Structure represents N sites of, e.g., atoms or ions, in any periodic or non-periodic arrangement.
The structure object is meant to be immutable and assumes that no internal variables are changed after its creation.
All methods that ‘changes’ the object creates and returns a new, updated, structure object.

This is the general heavy weight structure object. For lightweight structure objects, use UnitcellStructure or
RepresentativeStructure.

Naming conventions in httk.atomistic:

	Structure cell type abbreviations:

	
	rc = Representative cell: only representative atoms are given inside the conventional cell.

	they need to be replicated by the symmetry elements.

	uc = Unit cell: any (imprecisely defined) unit cell (usually the unit cell used to define the structure

	if it was not done via a representative cell.) with all atoms inside.

pc = Primitive unit cell: a smallest possible unit cell (the standard one) with all atoms inside.

cc = Conventional unit cell: the high symmetry unit cell (rc) with all atoms inside.

	For cells:

	
	cell = an abstract name for any reasonable representation of a ‘cell’ that defines

	the basis vectors used for representing the structure. When a ‘cell’ is returned,
it is an object of type Cell

basis = a 3x3 sequence-type with (in rows) the three basis vectors (for a periodic system, defining the unit cell, and defines the unit of repetition for the periodic dimensions)

lengths_and_angles = (a,b,c,alpha,beta,gamma): the basis vector lengths and angles

niggli_matrix = ((v1*v1, v2*v2, v3*v3),(2*v2*v3, 2*v1*v3, 2*v2*v3)) where v1, v2, v3 are the vectors forming the basis

metric = ((v1*v1,v1*v2,v1*v3),(v2*v1,v2*v2,v2*v3),(v3*v1,v3*v2,v3*v3))

	For sites:

	
	These following prefixes are used to describe types of site specifications:

	representative cell/rc = only representative atoms are given, which are then to be
repeated by structure symmetry group to give all sites

unit cell/uc = all atoms in unitcell

reduced = coordinates given in cell vectors

cartesian = coordinates given as direct cartesian coordinates

	sites = used as an abstract name for any sensible representation of a list of coordinates and a cell,

	when a ‘sites’ is returned, it is an object of type Sites

counts = number of atoms of each type (one per entry in assignments)

coordgroups = coordinates represented as a 3-level-list of coordinates, e.g.
[[[0,0,0],[0.5,0.5,0.5]],[[0.25,0.25,0.25]]] where level-1 list = groups: one group for each equivalent atom

counts and coords = one list with the number of atoms of each type (one per entry in assignments)
and a 2-level list of coordinates.

	For assignments of atoms, etc. to sites:

	assignments = abstract name for any representation of assignment of atoms.
When returned, will be object of type Assignment.

atomic_numbers = a sequence of integers for the atomic number of each species

occupations = a sequence where the assignments are repeated for each coordinate as needed
(prefixed with uc or rc depending on which coordinates)

	For cell scaling:

	scaling = abstract name for any representation of cell scaling

scale = multiply all basis vectors with this number

volume = rescaling the cell such that it takes this volume

	For periodicity:

	periodicity = abstract name of a representation of periodicity

pbc = ‘periodic boundary conditions’ = sequence of True and False for which basis vectors are periodic / non-periodic

nonperiodic_vecs = integer, number of basis vectors, counted from the first, which are non-periodic

	For spacegroup:

	spacegroup = abstract name for any spacegroup representation. When returned, is of type Spacegroup.

hall_symbol = specifically the hall_symbol string representation of the spacegroup

	
add_ref(ref)

	

	
add_refs(refs)

	

	
add_tag(tag, val)

	

	
add_tags(tags)

	

	
anonymous_formula

	

	
anonymous_wyckoff_sequence

	

	
cc

	

	
cc_formula_parts

	

	
clean()

	

	
classmethod create(structure=None, assignments=None, rc_cell=None, rc_basis=None, rc_lengths=None, rc_angles=None, rc_cosangles=None, rc_niggli_matrix=None, rc_metric=None, rc_a=None, rc_b=None, rc_c=None, rc_alpha=None, rc_beta=None, rc_gamma=None, rc_sites=None, rc_reduced_coordgroups=None, rc_cartesian_coordgroups=None, rc_reduced_coords=None, rc_cartesian_coords=None, rc_reduced_occupationscoords=None, rc_cartesian_occupationscoords=None, rc_occupancies=None, rc_counts=None, wyckoff_symbols=None, multiplicities=None, spacegroup=None, hall_symbol=None, spacegroupnumber=None, setting=None, rc_scale=None, rc_scaling=None, rc_volume=None, uc_cell=None, uc_basis=None, uc_lengths=None, uc_angles=None, uc_cosangles=None, uc_niggli_matrix=None, uc_metric=None, uc_a=None, uc_b=None, uc_c=None, uc_alpha=None, uc_beta=None, uc_gamma=None, uc_sites=None, uc_reduced_coordgroups=None, uc_cartesian_coordgroups=None, uc_reduced_coords=None, uc_cartesian_coords=None, uc_reduced_occupationscoords=None, uc_cartesian_occupationscoords=None, uc_occupancies=None, uc_counts=None, uc_scale=None, uc_scaling=None, uc_volume=None, uc_is_primitive_cell=False, uc_is_conventional_cell=False, volume_per_atom=None, periodicity=None, nonperiodic_vecs=None, refs=None, tags=None)

	A Structure represents N sites of, e.g., atoms or ions, in any periodic or non-periodic arrangement.

This is a swiss-army-type constructor that allows a selection between a large number of optional arguments.

Note: if redundant and non-compatible information is given, the behavior is undefined. E.g., don’t try to call this
with a structure + a volume in hopes to get a copy with rescaled volume.

	To create a new structure, three primary components are:

	
	
	cell: defines the basis vectors in which reduced coordinates are expressed, and the

	unit of repetition (if the structure has any periodicity - see the ‘periodicity’ parameter)

	assignments: a list of ‘things’ (atoms, ions, etc.) that goes on the sites in the structure

	sites: a sensible representation of location / coordinates of the sites.

Note: rc_-prefixes are consistently enforced for any quantity that would be different in a UnitcellStructure. This is to
allow for painless change between the various structure-type objects without worrying about accidently using
the wrong type of sites object.

Input parameters:

	ONE OF: ‘cell’; ‘basis’, ‘length_and_angles’; ‘niggli_matrix’; ‘metric’; all of: a,b,c, alpha, beta, gamma.
(cell requires a Cell object or a very specific format, so unless you know what you are doing, use one of the others.)

	ONE OF: ‘assignments’, ‘atomic_numbers’, ‘occupancies’
(assignments requires an Assignments object or a sequence.), occupations repeats similar site assignments as needed

	ONE OF: ‘rc_sites’, ‘rc_coords’ (IF rc_occupations OR rc_counts are also given),
‘uc_coords’ (IF uc_occupations OR uc_counts are also given)
‘rc_B_C’, where B=reduced or cartesian, C=coordgroups, coords, or occupationscoords

Notes:

	occupationscoords may differ from coords by order, since giving occupations as, e.g., [‘H’,’O’,’H’] does not necessarily
have the same order of the coordinates as the format of counts+coords as (2,1), [‘H’,’O’].

	rc_sites and uc_sites requires a Sites object or a very specific format, so unless you know what you are doing,
use one of the others.)

	
	ONE OF: scale or volume:

	scale = multiply the basis vectors with this scaling factor,
volume = the representative (conventional) cell volume (overrides ‘scale’ if both are given)
volume_per_atom = cell volume / number of atoms

	ONE OF periodicity or nonperiodic_vecs

See help(Structure) for more information on the data format of all these data representations.

	
element_wyckoff_sequence

	

	
extended

	

	
extensions

	

	
find_symmetry()

	

	
formula

	

	
formula_counts

	

	
formula_spaceseparated

	

	
formula_symbols

	

	
get_refs()

	

	
get_tag(tag)

	

	
get_tags()

	

	
hall_symbol

	

	
has_rc_repr

	Returns True if the structure already contains the representative coordinates + spacegroup, and thus can be queried for this data
without launching an expensive symmetry finder operation.

	
has_uc_repr

	Returns True if the structure contains any unit cell-type coordinate representation, and thus can be queried for this data
without launching a somewhat expensive cell filling operation.

	
io

	

	
number_of_elements

	

	
pbc

	

	
pc

	

	
pc_a

	

	
pc_alpha

	

	
pc_b

	

	
pc_beta

	

	
pc_c

	

	
pc_counts

	

	
pc_formula_parts

	

	
pc_gamma

	

	
pc_nbr_atoms

	

	
pc_volume

	

	
rc

	

	
rc_a

	

	
rc_alpha

	

	
rc_b

	

	
rc_basis

	

	
rc_beta

	

	
rc_c

	

	
rc_cartesian_coordgroups

	

	
rc_cartesian_coords

	

	
rc_cartesian_occupationscoords

	

	
rc_cell_orientation

	

	
rc_counts

	

	
rc_gamma

	

	
rc_lengths_and_angles

	

	
rc_nbr_atoms

	

	
rc_occupancies

	

	
rc_occupationssymbols

	

	
rc_reduced_coordgroups

	

	
rc_reduced_coords

	

	
rc_volume

	

	
spacegroup

	

	
spacegroup_number

	

	
spacegroup_number_and_setting

	

	
supercell

	

	
symbols

	

	
tidy()

	

	
transform(matrix, max_search_cells=20, max_atoms=1000)

	

	
uc

	

	
uc_a

	

	
uc_alpha

	

	
uc_b

	

	
uc_basis

	

	
uc_beta

	

	
uc_c

	

	
uc_cartesian_coordgroups

	

	
uc_cartesian_coords

	

	
uc_cartesian_occupationscoords

	

	
uc_cell

	

	
uc_cell_orientation

	

	
uc_counts

	

	
uc_formula

	

	
uc_formula_counts

	

	
uc_formula_parts

	

	
uc_formula_symbols

	

	
uc_gamma

	

	
uc_lengths_and_angles

	

	
uc_nbr_atoms

	

	
uc_occupancies

	

	
uc_occupationssymbols

	

	
uc_reduced_coordgroups

	

	
uc_reduced_coords

	

	
uc_reduced_occupationscoords

	

	
uc_sites

	

	
uc_volume

	

	
classmethod use(other)

	

	
volume_per_atom

	

	
wyckoff_sequence

	

	
class httk.atomistic.structure.StructureRef(structure, reference)

	Bases: httk.core.httkobject.HttkObject

	
class httk.atomistic.structure.StructureTag(structure, tag, value)

	Bases: httk.core.httkobject.HttkObject

	
httk.atomistic.structure.main()

	

 httk.atomistic.structurephasediagram module

httk.atomistic.structurephasediagram module

	
class httk.atomistic.structurephasediagram.StructurePhaseDiagram(structures, energies, hull_indices, competing_indices, hull_competing_indices, hull_distances, coord_system, phase_lines)

	Bases: httk.core.httkobject.HttkObject

Represents a phase diagram of structures

	
classmethod create(structures, energies)

	

	
get_phasediagram()

	

	
class httk.atomistic.structurephasediagram.StructurePhaseDiagramCompetingIndicies(indices)

	Bases: httk.core.httkobject.HttkObject

	
classmethod create(indices)

	

	
httk.atomistic.structurephasediagram.main()

	

	
httk.atomistic.structurephasediagram.setup_phasediagram(structures, energies)

	

 httk.atomistic.structureutils module

httk.atomistic.structureutils module

	
httk.atomistic.structureutils.abstract_formula(filled_counts)

	

	
httk.atomistic.structureutils.abstract_symbol(count)

	

	
httk.atomistic.structureutils.basis_determinant(basis)

	

	
httk.atomistic.structureutils.basis_scale_to_vol(basis, scale)

	

	
httk.atomistic.structureutils.basis_to_niggli(basis)

	

	
httk.atomistic.structureutils.basis_vol_to_scale(basis, vol)

	

	
httk.atomistic.structureutils.cartesian_to_reduced(cell, coordgroups)

	

	
httk.atomistic.structureutils.clean_coordgroups_and_assignments(coordgroups, assignments)

	

	
httk.atomistic.structureutils.coordgroups_and_assignments_to_coords_and_occupancies(coordgroups, assignments)

	

	
httk.atomistic.structureutils.coordgroups_and_assignments_to_symbols(coordgroups, assignmentobj)

	Return a list of atomic symbols, repeated as needed

	
httk.atomistic.structureutils.coordgroups_cartesian_to_reduced(coordgroups, basis)

	

	
httk.atomistic.structureutils.coordgroups_reduced_rc_to_unitcellsites(coordgroups, basis, hall_symbol, backends=['cif2cell', 'internal', 'ase'])

	

	
httk.atomistic.structureutils.coordgroups_reduced_uc_to_representative(coordgroups, basis, backends=['isotropy'])

	

	
httk.atomistic.structureutils.coordgroups_to_coords(coordgroups)

	

	
httk.atomistic.structureutils.coords_and_counts_to_coordgroups(coords, counts)

	

	
httk.atomistic.structureutils.coords_and_occupancies_to_coordgroups_and_assignments(coords, occupancies)

	

	
httk.atomistic.structureutils.coords_to_coordgroups(coords, counts)

	

	
httk.atomistic.structureutils.coordswap(fromidx, toidx, cell, coordgroups)

	

	
httk.atomistic.structureutils.get_primitive_basis_transform(hall_symbol)

	Transform to be applied to conventional unit cell to give the primitive unit cell

	
httk.atomistic.structureutils.internal_coordgroups_reduced_rc_to_unitcellsites(coordgroups, basis, hall_symbol, eps=0.001)

	

	
httk.atomistic.structureutils.lengths_angles_to_niggli(lengths, angles)

	

	
httk.atomistic.structureutils.main()

	

	
httk.atomistic.structureutils.metric_to_niggli(cell)

	

	
httk.atomistic.structureutils.niggli_scale_to_vol(niggli_matrix, scale)

	

	
httk.atomistic.structureutils.niggli_to_basis(niggli_matrix, orientation=1)

	

	
httk.atomistic.structureutils.niggli_to_cell_old(niggli_matrix, orientation=1)

	

	
httk.atomistic.structureutils.niggli_to_lengths_angles(niggli_matrix)

	

	
httk.atomistic.structureutils.niggli_to_metric(niggli)

	

	
httk.atomistic.structureutils.niggli_vol_to_scale(niggli_matrix, vol)

	

	
httk.atomistic.structureutils.normalized_formula(assignments, ratios, counts)

	

	
httk.atomistic.structureutils.normalized_formula_parts(assignments, ratios, counts)

	

	
httk.atomistic.structureutils.occupations_and_coords_to_assignments_and_coordgroups(occupationscoords, occupations)

	

	
httk.atomistic.structureutils.prototype_formula(proto)

	

	
httk.atomistic.structureutils.reduced_to_cartesian(cell, coordgroups)

	

	
httk.atomistic.structureutils.sort_coordgroups(coordgroups, individual_data)

	

	
httk.atomistic.structureutils.structure_reduced_uc_to_representative(struct, backends=['isotropy', 'fake'])

	

	
httk.atomistic.structureutils.structure_tidy(struct, backends=['platon'])

	

	
httk.atomistic.structureutils.structure_to_p1structure(struct, backends=['ase'])

	

	
httk.atomistic.structureutils.structure_to_sgstructure(struct, backends=['platon'])

	

	
httk.atomistic.structureutils.transform(structure, transformation, max_search_cells=20, max_atoms=1000)

	

 httk.atomistic.supercellutils module

httk.atomistic.supercellutils module

	
class httk.atomistic.supercellutils.StructureSupercellPlugin

	Bases: httk.core.httkobject.HttkPlugin

	
cubic(tolerance=None, max_search_cells=1000)

	

	
general(transformation, max_search_cells=20, max_atoms=1000)

	

	
orthogonal(tolerance=None, max_search_cells=1000)

	

	
plugin_init(struct)

	

	
httk.atomistic.supercellutils.build_cubic_supercell(structure, tolerance=None, max_search_cells=1000)

	

	
httk.atomistic.supercellutils.build_orthogonal_supercell(structure, tolerance=None, max_search_cells=1000, ortho=[True, True, True])

	

	
httk.atomistic.supercellutils.build_supercell_old(structure, transformation, max_search_cells=1000)

	

	
httk.atomistic.supercellutils.cubic_supercell_transformation(structure, tolerance=None, max_search_cells=1000)

	

	
httk.atomistic.supercellutils.orthogonal_supercell_transformation(structure, tolerance=None, ortho=[True, True, True])

	

 httk.atomistic.unitcellsites module

httk.atomistic.unitcellsites module

	
class httk.atomistic.unitcellsites.UnitcellSites(reduced_coordgroups=None, reduced_coords=None, counts=None, hall_symbol='P 1', pbc=None)

	Bases: httk.atomistic.sites.Sites

Represents any collection of sites in a unitcell

	
total_number_of_atoms

	

	
httk.atomistic.unitcellsites.main()

	

 httk.atomistic.unitcellstructure module

httk.atomistic.unitcellstructure module

	
class httk.atomistic.unitcellstructure.UnitcellStructure(assignments=None, uc_sites=None, uc_cell=None)

	Bases: httk.core.httkobject.HttkObject

A UnitcellStructure represents N sites of, e.g., atoms or ions, in any periodic or non-periodic arrangement.
It keeps track of all the copies of the atoms within a unitcell.

The structure object is meant to be immutable and assumes that no internal variables are changed after its creation.
All methods that ‘changes’ the object creates and returns a new, updated, structure object.

Naming conventions in httk.atomistic:

	For cells:

	
	cell = an abstract name for any reasonable representation of a ‘cell’ that defines

	the basis vectors used for representing the structure. When a ‘cell’ is returned,
it is an object of type Cell

basis = a 3x3 sequence-type with (in rows) the three basis vectors (for a periodic system, defining the unit cell, and defines the unit of repetition for the periodic dimensions)

lengths_and_angles = (a,b,c,alpha,beta,gamma): the basis vector lengths and angles

niggli_matrix = ((v1*v1, v2*v2, v3*v3),(2*v2*v3, 2*v1*v3, 2*v2*v3)) where v1, v2, v3 are the vectors forming the basis

metric = ((v1*v1,v1*v2,v1*v3),(v2*v1,v2*v2,v2*v3),(v3*v1,v3*v2,v3*v3))

	For sites:

	
	These following prefixes are used to describe types of site specifications:

	representative cell/rc = only representative atoms are given, which are then to be
repeated by structure symmetry group to give all sites

unit cell/uc = all atoms in unitcell

reduced = coordinates given in cell vectors

cartesian = coordinates given as direct cartesian coordinates

	sites = used as an abstract name for any sensible representation of a list of coordinates and a cell,

	when a ‘sites’ is returned, it is an object of type Sites

counts = number of atoms of each type (one per entry in assignments)

coordgroups = coordinates represented as a 3-level-list of coordinates, e.g.
[[[0,0,0],[0.5,0.5,0.5]],[[0.25,0.25,0.25]]] where level-1 list = groups: one group for each equivalent atom

counts and coords = one list with the number of atoms of each type (one per entry in assignments)
and a 2-level list of coordinates.

	For assignments of atoms, etc. to sites:

	assignments = abstract name for any representation of assignment of atoms.
When returned, will be object of type Assignment.

atomic_numbers = a sequence of integers for the atomic number of each species

occupations = a sequence where the assignments are repeated for each coordinate as needed
(prefixed with uc or rc depending on which coordinates)

	For cell scaling:

	scaling = abstract name for any representation of cell scaling

scale = multiply all basis vectors with this number

volume = rescaling the cell such that it takes this volume

	For periodicity:

	periodicity = abstract name of a representation of periodicity

pbc = ‘periodic boundary conditions’ = sequence of True and False for which basis vectors are periodic / non-periodic

nonperiodic_vecs = integer, number of basis vectors, counted from the first, which are non-periodic

	For spacegroup:

	spacegroup = abstract name for any spacegroup representation. When returned, is of type Spacegroup.

hall_symbol = specifically the hall_symbol string representation of the spacegroup

	
classmethod create(structure=None, uc_cell=None, uc_basis=None, uc_lengths=None, uc_angles=None, uc_niggli_matrix=None, uc_metric=None, uc_a=None, uc_b=None, uc_c=None, uc_alpha=None, uc_beta=None, uc_gamma=None, uc_sites=None, uc_reduced_coordgroups=None, uc_cartesian_coordgroups=None, uc_reduced_coords=None, uc_cartesian_coords=None, uc_reduced_occupationscoords=None, uc_cartesian_occupationscoords=None, uc_occupancies=None, uc_counts=None, uc_scale=None, uc_scaling=None, uc_volume=None, volume_per_atom=None, assignments=None, periodicity=None, nonperiodic_vecs=None, other_reps=None, refs=None, tags=None)

	A FullStructure represents N sites of, e.g., atoms or ions, in any periodic or non-periodic arrangement, where the positions
of all cites are given (as opposed to a set of unique sites + symmetry operations).

This is a swiss-army-type constructor that allows several different ways to create a FullStructure object.

To create a new structure, three primary components are:

	cell: defines the basis vectors in which reduced coordinates are expressed, and the
unit of repetition (if the structure has any periodicity - see the ‘periodicity’ parameter)

	assignments: a list of ‘things’ (atoms, ions, etc.) that goes on the sites in the structure

	sites: a sensible representation of location / coordinates of the sites.

Note: uc_-prefixes are consistently enforced for any quantity that would be different in a UniqueSitesStructure. This is to
allow for painless change between the various structure-type objects without worrying about accidently using
the wrong type of sites object.

Note: see help(Structure) for parameter naming conventions, i.e., what type of object is expected given a parameter name.

Input parameters:

	ONE OF: ‘uc_cell’; ‘uc_basis’, ‘uc_length_and_angles’; ‘uc_niggli_matrix’; ‘uc_metric’;
all of: uc_a,uc_b,uc_c, uc_alpha, uc_beta, uc_gamma.
(cell requires a Cell object or a very specific format, so unless you know what you are doing, use one of the others.)

	ONE OF: ‘uc_assignments’, ‘uc_atomic_numbers’, ‘uc_occupations’
(uc_assignments requires an Assignments object or a sequence.), uc_occupations repeats similar site assignments as needed

	ONE OF: ‘uc_sites’, ‘uc_coords’ (IF uc_occupations OR uc_counts are also given), or
‘uc_B_C’, where B=reduced or cartesian, C=coordgroups, coords, or occupationscoords

Notes:

	occupationscoords may differ from coords by order, since giving occupations as, e.g., [‘H’,’O’,’H’] does not necessarily
have the same order of the coordinates as the format of counts+coords as (2,1), [‘H’,’O’].

	uc_sites requires a Sites object or a python list on a very specific format, (so unless you know what you are doing,
use one of the others.)

	
	ONE OF: uc_scale, uc_volume, or volume_per_atom:

	scale = multiply the basis vectors with this scaling factor,
volume = the unit cell volume (overrides ‘scale’ if both are given)
volume_per_atom = cell volume / number of atoms

	ONE OF periodicity or nonperiodic_vecs

	
formula_builder

	

	
pbc

	

	
supercell

	

	
transform(matrix, max_search_cells=20, max_atoms=1000)

	

	
uc_a

	

	
uc_alpha

	

	
uc_b

	

	
uc_basis

	

	
uc_beta

	

	
uc_c

	

	
uc_cartesian_coordgroups

	

	
uc_cartesian_coords

	

	
uc_cartesian_occupationscoords

	

	
uc_cell_orientation

	

	
uc_counts

	

	
uc_gamma

	

	
uc_lengths_and_angles

	

	
uc_reduced_coordgroups

	

	
uc_reduced_coords

	

	
uc_volume

	

	
uc_volume_per_atom

	

	
classmethod use(other)

	

 httk.config package

httk.config package

Submodules

	httk.config.config module

 httk.config.config module

httk.config.config module

Read and setup httk configuration and versioning data.

httk_python_root is derived as the directory config.py is in + ..

config is a configparser.config object where:

	All assignments in a distdata.py file in httk_python_root are read into the section [general]

	Read httk.cfg in httk_python_root

	Using the latest definition of [general]/httk_root, read httk.cfg in that directory

	Read ~/.httk/config

In this config object, the section [general] is looked up for ‘httk_root’, which is exported as httk_root. If not present, ‘root’ is looked up in
the section ‘distdata’. If that is not present, the default of httk_python_root + ../.. is used.

If the file distdata.py in httk_python_root exists, the config object section [distdata] is looked up for version, version_date, and copyright_note,
which are exported as httk_version, httk_version_date, httk_copyright_note. If this file does not exist, they identifiers are instead derived using the ‘git’ command.
If that does not work, they are set to ‘unknown’, except for httk_copyright_note, which is set to a sensible default.

This python file has no dependencies except for the standard library (neither within httk or outside).
It will always remain safe to import by itself, e.g.:

(cd src/httk/config; python -c "import sys, config; sys.stdout.write(config.httk_version + '\n')")

Or:

python -c "import sys; here = path.abspath(path.dirname(__file__)); sys.path.insert(1, os.path.join(here,'src/httk/config')); import config; sys.stdout.write(config.httk_version + '\n')"

	
class httk.config.config.ExceptionlessConfig(config)

	Bases: object

	
httk.config.config.determine_version_data()

	

	
httk.config.config.read_config()

	

 httk.core package

httk.core package

Subpackages

	httk.core.vectors package
	Submodules
	httk.core.vectors.fracmath module

	httk.core.vectors.fracvector module

	httk.core.vectors.mutablefracvector module

	httk.core.vectors.vector module

	httk.core.vectors.vectormath module

Submodules

	httk.core.basic module

	httk.core.citation module

	httk.core.code module

	httk.core.computation module

	httk.core.console module

	httk.core.crypto module

	httk.core.ed25519 module

	httk.core.geometry module

	httk.core.httkobject module

	httk.core.ioadapters module

	httk.core.miniparser module
	LR(1) miniparser
	Introduction

	Detailed description

	Diagnostic output

	httk.core.project module

	httk.core.reference module

	httk.core.signature module

	httk.core.template module

 httk.core.vectors package

httk.core.vectors package

Submodules

	httk.core.vectors.fracmath module

	httk.core.vectors.fracvector module

	httk.core.vectors.mutablefracvector module

	httk.core.vectors.vector module

	httk.core.vectors.vectormath module

 httk.core.vectors.fracmath module

httk.core.vectors.fracmath module

	
httk.core.vectors.fracmath.any_to_fraction(arg, min_accuracy=Fraction(1, 10000))

	min_accuracy: we always assume the accuracy is at least this good. i.e., with min_accuracy=1/10000, we take
0.33 to really mean 0.3300, because we assume people meaning 1/3 at least makes the effort to write 0.3333

	
httk.core.vectors.fracmath.best_rational_in_interval(low, high)

	

	
httk.core.vectors.fracmath.frac_acos(x, degrees=False, prec=Fraction(1, 10000000000), limit=True)

	Return the arccosine of x in radians.

	
httk.core.vectors.fracmath.frac_acos_alt(x, degrees=False, prec=Fraction(1, 10000000000), limit=True)

	Return the arc cosine (measured in radians) of Decimal x.

	
httk.core.vectors.fracmath.frac_acos_old(x, degrees=False, prec=Fraction(1, 10000000000), limit=True)

	Return the arc cosine (measured in radians) of Decimal x.

	
httk.core.vectors.fracmath.frac_asin(x, degrees=False, prec=Fraction(1, 10000000000), limit=True)

	Return the arc sine (measured in radians) of Decimal x.

	
httk.core.vectors.fracmath.frac_atan(x, degrees=False, prec=Fraction(1, 10000000000), limit=True)

	Return the arctangent of x in radians.

	
httk.core.vectors.fracmath.frac_atan2(y, x, degrees=False, prec=Fraction(1, 10000000000), limit=True)

	Return the arctangent of y/x in radians.

Unlike atan(y/x), the signs of both x and y are considered.

	
httk.core.vectors.fracmath.frac_atan_old(x, degrees=False, prec=Fraction(1, 10000000000), limit=True)

	Return the arctangent of x in radians.

	
httk.core.vectors.fracmath.frac_cos(x, prec=Fraction(1, 10000000000), limit=True, degrees=False)

	

	
httk.core.vectors.fracmath.frac_exp(x, prec=Fraction(1, 10000000000), limit=True)

	Return e raised to the power of x.

	
httk.core.vectors.fracmath.frac_exp_old(x, prec=Fraction(1, 10000000000), limit=True)

	Return e raised to the power of x.

	
httk.core.vectors.fracmath.frac_log(x, base=None, prec=Fraction(1, 10000000000), limit=True)

	Return the logarithm of x to the given base.

If the base not specified, return the natural logarithm (base e) of x.

TODO: Fix: this fails for moderately large arguments.

	
httk.core.vectors.fracmath.frac_log10(x, prec=Fraction(1, 10000000000), limit=True)

	Return the base 10 logarithm of x.

	
httk.core.vectors.fracmath.frac_log_old(x, base=None, prec=Fraction(1, 10000000000), limit=True)

	Return the logarithm of x to the given base.

If the base not specified, return the natural logarithm (base e) of x.

	
httk.core.vectors.fracmath.frac_pi(prec=Fraction(1, 10000000000), limit=True)

	Compute Pi to the precision prec.

	
httk.core.vectors.fracmath.frac_pi_old(prec=Fraction(1, 10000000000), limit=True)

	Compute Pi to the precision prec.

	
httk.core.vectors.fracmath.frac_sin(x, prec=Fraction(1, 10000000000), limit=True, degrees=False)

	

	
httk.core.vectors.fracmath.frac_sin_old(x, prec=Fraction(1, 10000000000), limit=True, degrees=False)

	

	
httk.core.vectors.fracmath.frac_sqrt(x, prec=Fraction(1, 10000000000), limit=True)

	

	
httk.core.vectors.fracmath.frac_sqrt_old(x, prec=Fraction(1, 10000000000), limit=True)

	

	
httk.core.vectors.fracmath.frac_tan(x, degrees=False, prec=Fraction(1, 10000000000), limit=True)

	Return the tangent of x.

	
httk.core.vectors.fracmath.fraction_from_continued_fraction(cf)

	

	
httk.core.vectors.fracmath.get_continued_fraction(p, q)

	

	
httk.core.vectors.fracmath.integer_sqrt(n)

	

	
httk.core.vectors.fracmath.is_string(arg)

	

	
httk.core.vectors.fracmath.main()

	

	
httk.core.vectors.fracmath.run_alot(func, name, mathfun, fsmall, fmid, flarge, interval_within_one=False, positive=False, skip_worst=False)

	

	
httk.core.vectors.fracmath.string_to_val_and_delta(arg, min_accuracy=Fraction(1, 10000))

	

 httk.core.vectors.fracvector module

httk.core.vectors.fracvector module

	
class httk.core.vectors.fracvector.FracScalar(nom, denom)

	Bases: httk.core.vectors.fracvector.FracVector

Represents the fractional number nom/denom. This is a subclass of FracVector with the purpose of making
it clear when a scalar fracvector is needed/used.

	
classmethod create(nom, denom=None, simplify=True)

	Create a FracScalar.

	FracScalar(something)

	something may be any object that can be used in the constructor of the Python Fraction class
(also works with strings!).

	
class httk.core.vectors.fracvector.FracVector(noms, denom=1)

	Bases: httk.core.vectors.vector.Vector

FracVector is a general immutable N-dimensional vector (tensor) class for performing linear algebra with fractional numbers.

A FracVector consists of a multidimensional tuple of integer nominators, and a single shared integer denominator.

Since FracVectors are immutable, every operation on a FracVector returns a new FracVector with the result of the operation.
A created FracVector never changes. Hence, they are safe to use as keys in dictionaries, to use in sets, etc.

Note: most methods returns FracVector results that are not simplified (i.e., the FracVector returned does not have
the smallest possible integer denominator). To return a FracVector with the smallest possible denominator, just call
FracVector.simplify() at the last step.

	
T()

	Returns the transpose, A^T.

	
acos(prec=None, degrees=False, limit=False)

	Return a FracVector where every element is the arccos of the element in the source FracVector.

prec = precision (should be set as a fraction)
limit = True requires the denominator to be smaller or equal to precision

	
argmax()

	Return the index of the maximum element across all dimensions in the FracVector.

	
argmin()

	Return the index of the minimum element across all dimensions in the FracVector.

	
asin(prec=None, degrees=False, limit=False)

	Return a FracVector where every element is the arcsin of the element in the source FracVector.

prec = precision (should be set as a fraction)
limit = True requires the denominator to be smaller or equal to precision

	
ceil()

	Returns the integer that is equal to or just below the value stored in a scalar FracVector.

	
classmethod chain_vecs(vecs)

	Optimized chaining of FracVectors.

vecs: a list (or tuple) of fracvectors.

	Returns the same thing as

	FracVector.create(vecs,chain=True)

	i.e., removes outermost dimension and chain the sub-sequences. If input=[[1 2 3],[4,5,6]], then

	FracVector.chain(input) -> [1,2,3,4,5,6]

but this method assumes all vectors share the same denominator (it raises an exception if this is not true)

	
cos(prec=None, degrees=False, limit=False)

	Return a FracVector where every element is the cosine of the element in the source FracVector.

prec = precision (should be set as a fraction)
limit = True requires the denominator to be smaller or equal to precision

	
classmethod create(noms, denom=None, simplify=True, chain=False, min_accuracy=Fraction(1, 10000))

	Create a FracVector from various types of sequences.

Simplest use:

FracVector.create(some_kind_of_sequence)

where ‘some_kind_of_sequence’ can be any nested list or tuple of objects that can be used in the constructor
of the Python Fraction class (also works with strings!). If any object found while traveling the items has a
.to_fractions() method, it will be called and is expected to return a fraction or list or tuple of fractions.

Optional parameters:

	Invocation with denominator: FracVector.create(nominators,denominator)
nominators is any sequence, and denominator a common denominator to divide all nominators with

	simplify: boolean, return a FracVector with the smallest possible denominator.

	chain: boolean, remove outermost dimension and chain the sub-sequences. I.e., if input=[[1 2 3],[4,5,6]], then
FracVector.create(input) -> [1,2,3,4,5,6]

Relevant: FracVector itself implements .to_fractions(), and hence, the same constructor allows stacking
several FracVector objects like this:

vertical_fracvector = FracVector.create([[fracvector1],[fracvector2]])
horizontal_fracvector = FracVector.create([fracvector1,fracvector2],chain=True)

	min_accuracy: set to a boolean to adjust the minimum accuracy assumed in string input.
The default is 1/10000, i.e. 0.33 = 0.3300 = 33/100, whereas 0.3333 = 1/3.
Set it to None to assume infinite accuracy, i.e., convert exactly whatever string is given
(unless a standard deviation is given as a parenthesis after the string.)

	
classmethod create_cos(data, degrees=False, limit=False, find_best_rational=True, prec=Fraction(1, 1000000))

	Creating a FracVector as the cosine of the argument data. If data are composed by strings, the standard deviation of
the numbers are taken into account, and the best possible fractional approximation to the cosines
of the data are returned within the standard deviation.

This is not the same as FracVector.create(data).cos(), which creates the best possible fractional
approximations of data and then takes cos on that.

	
classmethod create_exp(data, prec=Fraction(1, 1000000), limit=False)

	Creating a FracVector as the exponent of the argument data. If data are composed by strings, the standard deviation of
the numbers are taken into account, and the best possible fractional approximation to the cosines
of the data are returned within the standard deviation.

This is not the same as FracVector.create(data).exp(), which creates the best possible fractional
approximations of data and then takes exp on that.

	
classmethod create_sin(data, degrees=False, limit=False, prec=Fraction(1, 1000000))

	Creating a FracVector as the sine of the argument data. If data are composed by strings, the standard deviation of
the numbers are taken into account, and the best possible fractional approximation to the cosines
of the data are returned within the standard deviation.

This is not the same as FracVector.create(data).sin(), which creates the best possible fractional
approximations of data and then takes cos on that.

	
cross(other)

	Returns the vector cross product of the 3-element 1D vector with the 3-element 1D vector ‘other’, i.e., A x B.

	
det()

	Returns the determinant of the FracVector as a scalar FracVector.

	
dim

	This property returns a tuple with the dimensionality of each dimension of the FracVector
(the noms are assumed to be a nested list of rectangular shape).

	
dot(other)

	Returns the vector dot product of the 1D vector with the 1D vector ‘other’, i.e., A . B or A cdot B. The same as A * B.T().

	
exp(prec=None, limit=False)

	Return a FracVector where every element is the exponent of the element in the source FracVector.

prec = precision (should be set as a fraction)
limit = True requires the denominator to be smaller or equal to precision

	
classmethod eye(dims)

	Create a diagonal one-matrix with the given dimensions

	
flatten()

	Returns a FracVector that has been flattened out to a single rowvector

	
floor()

	Returns the integer that is equal to or just below the value stored in a scalar FracVector.

	
classmethod from_floats(l, resolution=4294967296)

	Create a FracVector from a (nested) list or tuple of floats. You can convert a numpy array with
this method if you use A.tolist()

resolution: the resolution used for interpreting the given floating point numbers. Default is 2^32.

	
classmethod from_tuple(t)

	Return a FracVector created from the tuple representation: (denom, …noms…), returned by the to_tuple() method.

	
ged_prestacked(other)

	

	
ged_stackedinsert(pos, other)

	

	
get_append(other)

	

	
get_extend(other)

	

	
get_insert(pos, other)

	

	
get_prepend(other)

	

	
get_prextend(other)

	

	
get_stacked(other)

	

	
inv()

	Returns the matrix inverse, A^-1

	
lengthsqr()

	Returns the square of the length of the vector. The same as A * A.T()

	
limit_denominator(max_denom=1000000000)

	Returns a FracVector of reduced resolution.

resolution: each element in the returned FracVector is the closest numerical approximation that can is allowed by
a fraction with maximally this denominator. Note: since all elements must be put on a common denominator, the result
may have a larger denominator than max_denom

	
max()

	Return the maximum element across all dimensions in the FracVector. max(fracvector) works for a 1D vector.

	
metric_product(vecA, vecB)

	
	Returns the result of the metric product using the present square FracVector as the metric matrix. The same as

	vecA*self*vecB.T().

	
min()

	Return the minimum element across all dimensions in the FracVector. max(fracvector) works for a 1D vector.

	
mul(other)

	Returns the result of multiplying the vector with ‘other’ using matrix multiplication.

Note that for two 1D FracVectors, A.dot(B) is not the same as A.mul(B), but rather: A.mul(B.T()).

	
nargmax()

	Return a list of indices of all maximum elements across all dimensions in the FracVector.

	
nargmin()

	Return a list of indices for all minimum elements across all dimensions in the FracVector.

	
static nested_map(op, *ls)

	Map an operator over a nested tuple. (i.e., the same as the built-in map(), but works recursively on a nested tuple)

	
static nested_map_fractions(op, *ls)

	Map an operator over a nested tuple, but checks every element for a method to_fractions()
and uses this to further convert objects into tuples of Fraction.

	
nom

	Returns the integer nominator of a scalar FracVector.

	
normalize()

	Add/remove an integer +/-N to each element to place it in the range [0,1)

	
normalize_half()

	Add/remove an integer +/-N to each element to place it in the range [-1/2,1/2)

	This is useful to find the shortest vector C between two points A, B in a space with periodic boundary conditions [0,1):

	C = (A-B).normalize_half()

	
classmethod pi(prec=Fraction(1, 1000000), limit=False)

	Create a scalar FracVector with a rational approximation of pi to precision prec.

	
classmethod random(dims, minnom=-100, maxnom=100, denom=100)

	Create a zero matrix with the given dimensions

	
reciprocal()

	

	
classmethod set_common_denom(A, B)

	Used internally to combine two different FracVectors.

Returns a tuple (A2,B2,denom) where A2 is numerically equal to A, and B2 is numerically equal to B, but A2 and B2 are both
set on the same shared denominator ‘denom’ which is the product of the denominator of A and B.

	
set_denominator(set_denom=1000000000)

	Returns a FracVector of reduced resolution where every element is the closest numerical approximation using this denominator.

	
sign()

	Returns the sign of the scalar FracVector: -1, 0 or 1.

	
simplify()

	Returns a reduced FracVector. I.e., each element has the same numerical value
but the new FracVector represents them using the smallest possible shared denominator.

	
sin(prec=None, degrees=False, limit=False)

	Return a FracVector where every element is the sine of the element in the source FracVector.

prec = precision (should be set as a fraction)
limit = True requires the denominator to be smaller or equal to precision

	
sqrt(prec=None, limit=False)

	Return a FracVector where every element is the sqrt of the element in the source FracVector.

prec = precision (should be set as a fraction)
limit = True requires the denominator to be smaller or equal to precision

	
classmethod stack_vecs(vecs)

	Optimized stacking of FracVectors.

vecs = a list (or tuple) of fracvectors.

Returns the same thing as:

FracVector.create(vecs)

but only works if all vectors share the same denominator (raises an exception if this is not true)

	
to_float()

	Converts a scalar ExactVector to a single float.

	
to_floats()

	Converts the ExactVector to a list of floats.

	
to_fraction()

	Converts scalar FracVector to a fraction.

	
to_fractions()

	Converts the FracVector to a list of fractions.

	
to_int()

	Converts scalar FracVector to an integer (truncating as necessary).

	
to_ints()

	Converts the FracVector to a list of integers, rounded off as best possible.

	
to_string(accuracy=8)

	Converts the ExactVector to a list of strings.

	
to_strings(accuracy=8)

	Converts the ExactVector to a list of strings.

	
to_tuple()

	Return a FracVector on tuple representation: (denom, …noms…).

	
classmethod use(old)

	Make sure variable is a FracVector, and if not, convert it.

	
validate()

	

	
classmethod zeros(dims)

	Create a zero matrix with the given dimensions

	
httk.core.vectors.fracvector.main()

	

	
httk.core.vectors.fracvector.nested_map_fractions_list(op, *ls)

	Map an operator over a nested list, but checks every element for a method to_fractions()
and uses this to further convert objects into lists of Fraction.

	
httk.core.vectors.fracvector.nested_map_fractions_tuple(op, *ls)

	Map an operator over a nested tuple, but checks every element for a method to_fractions()
and uses this to further convert objects into tuples of Fraction.

	
httk.core.vectors.fracvector.nested_map_list(op, *ls)

	Map an operator over a nested list. (i.e., the same as the built-in map(), but works recursively on a nested list)

	
httk.core.vectors.fracvector.nested_map_tuple(op, *ls)

	Map an operator over a nested tuple. (i.e., the same as the built-in map(), but works recursively on a nested tuple)

	
httk.core.vectors.fracvector.nested_reduce(op, l, initializer=None)

	Same as built-in reduce, but operates on a nested tuple/list/sequence.

	
httk.core.vectors.fracvector.nested_reduce_fractions(op, l, initializer=None)

	Same as built-in reduce, but operates on a nested tuple/list/sequence. Also checks every element
for a method to_fractions() and uses this to further convert such elements to lists of fractions.

	
httk.core.vectors.fracvector.nested_reduce_levels(op, l, level=1, initializer=None)

	Same as built-in reduce, but operates on a nested tuple/list/sequence.

	
httk.core.vectors.fracvector.tuple_eye(dims, onepos=0)

	Create a matrix with the given dimensions and 1 on the diagonal

	
httk.core.vectors.fracvector.tuple_index(dims, uppidx=())

	Create a nested tuple where every element is a tuple indicating the position of that tuple

	
httk.core.vectors.fracvector.tuple_random(dims, minval, maxval)

	Create a nested tuple with the given dimensions filled with random numbers between minval and maxval

	
httk.core.vectors.fracvector.tuple_slice(l, key)

	Given a python slice (i.e., what you get to __getitem__ when you write A[3:2]), cut out the relevant
nested tuple.

	
httk.core.vectors.fracvector.tuple_zeros(dims)

	Create a netsted tuple with the given dimensions filled with zeroes

 httk.core.vectors.mutablefracvector module

httk.core.vectors.mutablefracvector module

	
class httk.core.vectors.mutablefracvector.MutableFracVector(noms, denom)

	Bases: httk.core.vectors.fracvector.FracVector, httk.core.vectors.vector.MutableVector

Same as FracVector, only, this version allow assignment of elements, e.g.,

mfracvec[2,7] = 5

and, e.g.,

mfracvec[:,7] = [1,2,3,4]

Other than this, the FracVector methods exist and do the same, i.e., they return copies of the fracvector, rather
than modifying it.

However, methods have also been added named with set_* prefixes which performs mutating operations, e.g.,

A.set_T()

replaces A with its own transpose, whereas

A.T()

just returns a new MutableFracVector that is the transpose of A, leaving A unmodified.

	
classmethod from_FracVector(other)

	Create a MutableFracVector from a FracVector.

	
invalidate()

	Internal method to call when MutableFracVector is changed in such a way that cached properties
are invalidated (e.g., _dim)

	
static nested_inmap(op, *ls)

	Like inmap, but work for nested lists

	
static nested_map(op, *ls)

	Map an operator over a nested list. (i.e., the same as the built-in map(), but works recursively on a nested list)

	
static nested_map_fractions(op, *ls)

	Map an operator over a nested list, but checks every element for a method to_fractions()
and uses this to further convert objects into lists of Fraction.

	
set_T()

	Changes MutableFracVector inline into own transpose: self -> self.T

	
set_inv()

	Changes MutableFracVector inline into own inverse: self -> self^-1

	
set_negative()

	Changes MutableFracVector inline into own negative: self -> -self

	
set_normalize()

	Add/remove an integer +/-N to each element to place it in the range [0,1)

	
set_normalize_half()

	Add/remove an integer +/-N to each element to place it in the range [-1/2,1/2)

	This is useful to find the shortest vector C between two points A, B in a space with periodic boundary conditions [0,1):

	C = (A-B).normalize_half()

	
set_set_denominator(resolution=1000000000)

	Changes MutableFracVector; reduces resolution.

resolution is the new denominator, each element becomes the closest numerical approximation using this denominator.

	
set_simplify()

	Changes MutableFracVector; reduces any common factor between denominator and all nominators

	
to_FracVector()

	Return a FracVector with the values of this MutableFracVector.

	
classmethod use(old)

	Make sure variable is a MutableFracVector, and if not, convert it.

	
validate()

	

	
httk.core.vectors.mutablefracvector.inmap(f, x)

	Like built-in map, but work on a list and replace the elements in the list with the result of the mapping.

	
httk.core.vectors.mutablefracvector.list_set_slice(l, key, values)

	
	Given:

	l = list,
key = python slice (i.e., what you get to __setitem__ when you write A[3:2]=[2,5])
values = a list of values,

change the elements specified by the slice in key to those given by values.

	
httk.core.vectors.mutablefracvector.list_slice(l, key)

	Given a python slice (i.e., what you get to __getitem__ when you write A[3:2]), cut out the relevant
nested list.

	
httk.core.vectors.mutablefracvector.main()

	

	
httk.core.vectors.mutablefracvector.nested_inmap_list(op, *ls)

	Like inmap, but work for nested lists

 httk.core.vectors.vector module

httk.core.vectors.vector module

	
class httk.core.vectors.vector.MutableVector

	Bases: object

	
class httk.core.vectors.vector.Scalar

	Bases: httk.core.vectors.vector.Vector

Baseclass for scalars

	
class httk.core.vectors.vector.Vector

	Bases: object

Defines the general Vector API

	
classmethod chain_vecs(vecs)

	Optimized chaining of Vectors.

vecs: a list (or tuple) of vectors.

	Returns the same thing as

	Vector.create(vecs, chain=True)

	i.e., removes outermost dimension and chain the sub-sequences. If input=[[1 2 3],[4,5,6]], then

	Vector.chain(input) -> [1,2,3,4,5,6]

Subclasses may add requirements on the vectors to use this method over <subclass>.create

	
classmethod create(data, chain=False)

	Create a Vector from various types of sequenced data.

Will return a suitable Vector subclass for the type of data given

	
classmethod eye(dims)

	Create a diagonal one-matrix with the given dimensions

	
ged_prestacked(other)

	

	
ged_stackedinsert(pos, other)

	

	
get_append(other)

	

	
get_extend(other)

	

	
get_insert(pos, other)

	

	
get_prepend(other)

	

	
get_prextend(other)

	

	
get_stacked(other)

	

	
classmethod random(dims, minval=-100, maxval=100)

	Create a zero matrix with the given dimensions

	
classmethod stack_vecs(vecs)

	Optimized stacking of FracVectors.

vecs = a list (or tuple) of fracvectors.

Returns the same thing as:

Vector.create(vecs)

Subclasses may add requirements on the vectors to use this method over <subclass>.create

	
classmethod use(old)

	Make sure variable is a FracVector, and if not, convert it.

	
classmethod zeros(dims)

	Create a zero matrix with the given dimensions

	
httk.core.vectors.vector.main()

	

	
httk.core.vectors.vector.nested_map_fractions_list(op, *ls)

	Map an operator over a nested list, but checks every element for a method to_fractions()
and uses this to further convert objects into lists of Fraction.

	
httk.core.vectors.vector.nested_map_list(op, *ls)

	Map an operator over a nested list. (i.e., the same as the built-in map(), but works recursively on a nested list)

	
httk.core.vectors.vector.nested_reduce(op, l, initializer=None)

	Same as built-in reduce, but operates on a nested tuple/list/sequence.

	
httk.core.vectors.vector.nested_reduce_fractions(op, l, initializer=None)

	Same as built-in reduce, but operates on a nested tuple/list/sequence. Also checks every element
for a method to_fractions() and uses this to further convert such elements to lists of fractions.

	
httk.core.vectors.vector.nested_reduce_levels(op, l, level=1, initializer=None)

	Same as built-in reduce, but operates on a nested tuple/list/sequence.

	
httk.core.vectors.vector.tuple_eye(dims, onepos=0)

	Create a matrix with the given dimensions and 1 on the diagonal

	
httk.core.vectors.vector.tuple_index(dims, uppidx=())

	Create a nested tuple where every element is a tuple indicating the position of that tuple

	
httk.core.vectors.vector.tuple_random(dims, minval, maxval)

	Create a nested tuple with the given dimensions filled with random numbers between minval and maxval

	
httk.core.vectors.vector.tuple_slice(l, key)

	Given a python slice (i.e., what you get to __getitem__ when you write A[3:2]), cut out the relevant
nested tuple.

	
httk.core.vectors.vector.tuple_zeros(dims)

	Create a netsted tuple with the given dimensions filled with zeroes

 httk.core.vectors.vectormath module

httk.core.vectors.vectormath module

	
httk.core.vectors.vectormath.acos(x, **args)

	Return the arc cosine of x, in radians.

(For vectors applied to each element.)

	
httk.core.vectors.vectormath.acosh(x, **args)

	Return the inverse hyperbolic cosine of x.

(For vectors applied to each element.)

	
httk.core.vectors.vectormath.asin(x, **args)

	Return the arc sine of x, in radians.

(For vectors applied to each element.)

	
httk.core.vectors.vectormath.asinh(x, **args)

	Return the inverse hyperbolic sine of x.

(For vectors applied to each element.)

	
httk.core.vectors.vectormath.atan(x, **args)

	Return the arc tangent of x, in radians.

(For vectors applied to each element.)

	
httk.core.vectors.vectormath.atan2(x, y, **args)

	Return atan(y / x), in radians. The result is between -pi and pi. The vector in the plane from the origin to point (x, y) makes this angle with the positive X axis. The point of atan2() is that the signs of both inputs are known to it, so it can compute the correct quadrant for the angle. For example, atan(1) and atan2(1, 1) are both pi/4, but atan2(-1, -1) is -3*pi/4.

(For vectors applied to each element.)

	
httk.core.vectors.vectormath.atanh(x, **args)

	Return the inverse hyperbolic tangent of x.

(For vectors applied to each element.)

	
httk.core.vectors.vectormath.ceil(x, **args)

	Return the ceiling of x, the smallest integer value greater than or equal to x.

(For vectors applied to each element.)

	
httk.core.vectors.vectormath.copysign(x, y, **args)

	Return x with the sign of y.
If an element of y is zero, abs of the corresponding element in x is returned.

(For vectors applied to each element.)

	
httk.core.vectors.vectormath.cos(x, **args)

	Return the cosine of x radians.

(For vectors applied to each element.)

	
httk.core.vectors.vectormath.cosh(x, **args)

	Return the hyperbolic cosine of x.

(For vectors applied to each element.)

	
httk.core.vectors.vectormath.degrees(x, **args)

	Convert angle x from radians to degrees.

(For vectors applied to each element.)

	
httk.core.vectors.vectormath.e(x, **args)

	Return the value of e represented using the same scalar or vector representation as x.

	
httk.core.vectors.vectormath.erf(x, **args)

	Return the error function at x.

(For vectors applied to each element.)

	
httk.core.vectors.vectormath.erfc(x, **args)

	Return the complementary error function at x.

(For vectors applied to each element.)

	
httk.core.vectors.vectormath.exp(x, **args)

	Return e**x. (For vectors applied to each element.)

	
httk.core.vectors.vectormath.expm1(x, **args)

	Return e**x - 1. (For vectors applied to each element.)

	
httk.core.vectors.vectormath.fabs(x, **args)

	Return the absolute value of x.

(For vectors applied to each element.)

	
httk.core.vectors.vectormath.factorial(x, **args)

	Return x factorial. Raises ValueError if (any element of) x is negative.

(For vectors applied to each element.)

	
httk.core.vectors.vectormath.floor(x, **args)

	Return the floor of x, the largest integer value less than or equal to x.

(For vectors applied to each element.)

	
httk.core.vectors.vectormath.fmod(x, y, **args)

	Equivalent to x % y.

	
httk.core.vectors.vectormath.frexp(x, **args)

	Return the mantissa and exponent of x as the pair (m, e).
m is a float and e is an integer such that x == m * 2**e exactly.
If x is zero, returns (0.0, 0), otherwise 0.5 <= abs(m) < 1.

(For vectors applied to each element and returns tuples nested in lists.)

	
httk.core.vectors.vectormath.fsum(iterable, **args)

	Equivalent to sum(iterable)

	
httk.core.vectors.vectormath.gamma(x, **args)

	Return the Gamma function at x.

(For vectors applied to each element.)

	
httk.core.vectors.vectormath.hypot(x, y, **args)

	Return the Euclidean norm, sqrt(x*x + y*y). This is the length of the vector from the origin to point (x, y).

(For vectors applied to each element.)

	
httk.core.vectors.vectormath.isanyinf(x, **args)

	Check if the float x is positive or negative infinity.

(For vectors returns True/False if any element is inf)

	
httk.core.vectors.vectormath.isanynan(x, **args)

	Check if the float x is a NaN (not a number).

(For vectors returns True/False if any element is NaN)

	
httk.core.vectors.vectormath.isinf(x, **args)

	Check if the float x is positive or negative infinity.

(For vectors applied to each element and returns True/False as nested lists.)

	
httk.core.vectors.vectormath.isnan(x, **args)

	Check if the float x is a NaN (not a number).

(For vectors applied to each element and returns True/False as nested lists.)

	
httk.core.vectors.vectormath.ldexp(x, **args)

	Return x * (2**i). This is essentially the inverse of function frexp().

(For vectors applied to each element.)

	
httk.core.vectors.vectormath.lgamma(x, **args)

	Return the natural logarithm of the absolute value of the Gamma function at x.

(For vectors applied to each element.)

	
httk.core.vectors.vectormath.log(x, base=None, **args)

	With one argument, return the natural logarithm of x (to base e).

With two arguments, return the logarithm of x to the given base, calculated as log(x)/log(base).

(For vectors applied to each element.)

	
httk.core.vectors.vectormath.log10(x, **args)

	Return the base-10 logarithm of x. This is usually more accurate than log(x, 10).

(For vectors applied to each element.)

	
httk.core.vectors.vectormath.log1p(x, **args)

	Return the natural logarithm of 1+x (base e). The result is calculated in a way which is accurate for x near zero.

(For vectors applied to each element.)

	
httk.core.vectors.vectormath.main()

	

	
httk.core.vectors.vectormath.modf(x, **args)

	Return the fractional and integer parts of x. Both results carry the sign of x.

(For vectors applied to each element and returns tuples nested in lists.)

	
httk.core.vectors.vectormath.pi(x, **args)

	Return the value of pi represented using the same scalar or vector representation as x.

	
httk.core.vectors.vectormath.pow(x, y, **args)

	Return x raised to the power y. Equivalent with x**y

(For vectors applied to each element.)

	
httk.core.vectors.vectormath.radians(x, **args)

	Convert angle x from degrees to radians.

(For vectors applied to each element.)

	
httk.core.vectors.vectormath.sign(x, **args)

	Return the sign of x, equivalent to copysign(1,x).

(For vectors applied to each element.)

	
httk.core.vectors.vectormath.sin(x, **args)

	Return the sine of x radians.

(For vectors applied to each element.)

	
httk.core.vectors.vectormath.sinh(x, **args)

	Return the hyperbolic sine of x.

(For vectors applied to each element.)

	
httk.core.vectors.vectormath.sqrt(x, **args)

	Return the square root of x.

(For vectors applied to each element.)

	
httk.core.vectors.vectormath.tan(x, **args)

	Return the tangent of x radians.

(For vectors applied to each element.)

	
httk.core.vectors.vectormath.tanh(x, **args)

	Return the hyperbolic tangent of x.

(For vectors applied to each element.)

	
httk.core.vectors.vectormath.trunc(x, **args)

	Returns the integer part of x.

(For vectors applied to each element.)

 httk.core.basic module

httk.core.basic module

Basic help functions

	
httk.core.basic.anonymous_symbol_to_int(symb)

	

	
httk.core.basic.breath_first_idxs(dim=1, start=None, end=None, perm=True, negative=False)

	

	
httk.core.basic.create_tmpdir()

	

	
httk.core.basic.destroy_tmpdir(tmpdir)

	

	
httk.core.basic.flatten(l)

	

	
httk.core.basic.int_to_anonymous_symbol(i)

	

	
httk.core.basic.is_unary(e)

	

	
httk.core.basic.main()

	

	
httk.core.basic.micro_pyawk(ioa, search, results=None, debug=False, debugfunc=None, postdebugfunc=None)

	Small awk-mimicking search routine.

‘f’ is stream object to search through.
‘search’ is the “search program”, a list of lists/tuples with 3 elements; i.e.,
[[regex,test,run],[regex,test,run],…]
‘results’ is a an object that your search program will have access to for storing results.

Here regex is either as a Regex object, or a string that we compile into a Regex.
test and run are callable objects.

This function goes through each line in filename, and if regex matches that line and
test(results,line)==True (or test == None) we execute run(results,match),
where match is the match object from running Regex.match.

The default results is an empty dictionary. Passing a results object let you interact
with it in run() and test(). Hence, in many occasions it is thus clever to use results=self.

Returns: results

	
httk.core.basic.mkdir_p(path)

	

	
httk.core.basic.nested_split(s, start, stop)

	

	
httk.core.basic.parse_parexpr(string)

	Generate parenthesized contents in string as pairs (level, contents).

	
class httk.core.basic.rewindable_iterator(iterator)

	Bases: object

	
next()

	

	
rewind(rewindstr=None)

	

	
httk.core.basic.tuple_to_str(t)

	

 httk.core.citation module

httk.core.citation module

Keep track of citation information for different parts of httk, so that this info can be printed out on program exit.
Turn on either explicitly by calling httk.config.print_citations_at_exit() from your program, or implicitly for all software
using httk by setting ‘auto_print_citations_at_exit=yes’ in httk.cfg

Right now this is mostly a proof of concept code, and was added in response to a concern that co-authors of the software
would not get credit. We should extend this to add a facility to make it easier to track and acknowledge citations
also of the data being used.

	
httk.core.citation.add_ext_citation(software, author)

	

	
httk.core.citation.add_src_citation(module, author)

	

	
httk.core.citation.dont_print_citations_at_exit()

	

	
httk.core.citation.print_citations()

	

	
httk.core.citation.print_citations_at_exit()

	

 httk.core.code module

httk.core.code module

	
class httk.core.code.Code(name, version)

	Bases: httk.core.httkobject.HttkObject

Object for keeping track of httk data about a computer software or script

	
add_ref(ref)

	

	
add_refs(refs)

	

	
add_tag(tag, val)

	

	
add_tags(tags)

	

	
classmethod create(name, version, refs=None, tags=None)

	Create a Computation object.

	
get_refs()

	

	
get_tag(tag)

	

	
get_tags()

	

	
class httk.core.code.CodeRef(code, reference)

	Bases: httk.core.httkobject.HttkObject

	
class httk.core.code.CodeTag(structure, tag, value)

	Bases: httk.core.httkobject.HttkObject

	
httk.core.code.main()

	

 httk.core.computation module

httk.core.computation module

	
class httk.core.computation.Computation(computation_date, description, code, manifest_hash, signatures, keys, relpath, project_counter, added_date=None)

	Bases: httk.core.httkobject.HttkObject

Object for keeping track of httk data about a specific computation run

	
add_project(project)

	

	
add_projects(projects)

	

	
add_ref(ref)

	

	
add_refs(refs)

	

	
add_tag(tag, val)

	

	
add_tags(tags)

	

	
added_date

	

	
classmethod create(computation_date, description, code, manifest_hash, signatures, keys, project_counter, relpath, added_date=None)

	Create a Computation object.

	
get_projects()

	

	
get_refs()

	

	
get_tag(tag)

	

	
get_tags()

	

	
class httk.core.computation.ComputationProject(computation, project)

	Bases: httk.core.httkobject.HttkObject

	
classmethod create(computation, project)

	Create a Computation object.

	
class httk.core.computation.ComputationRef(computation, reference)

	Bases: httk.core.httkobject.HttkObject

	
class httk.core.computation.ComputationRelated(main_computation, other_computation, relation)

	Bases: httk.core.httkobject.HttkObject

Object for keeping track of httk data about a specific computation run

	
classmethod create(main_computation, other_computation, relation)

	Create a Computation object.

	
class httk.core.computation.ComputationTag(computation, tag, value)

	Bases: httk.core.httkobject.HttkObject

	
class httk.core.computation.Result(computation)

	Bases: httk.core.httkobject.HttkObject

Intended as a base class for results tables for computations

	
classmethod create(computation)

	Create a Computation object.

	
httk.core.computation.main()

	

 httk.core.console module

httk.core.console module

	
httk.core.console.cerr(*args)

	

	
httk.core.console.cout(*args)

	

 httk.core.crypto module

httk.core.crypto module

Provides a few central and very helpful functions for cryptographic hashes, etc.

	
httk.core.crypto.generate_keys(public_key_path, secret_key_path)

	Generates a public and a private key pair and stores them in respective files

	
httk.core.crypto.get_crypto_signature(message, secret_key=None, keyfile=None)

	

	
httk.core.crypto.hexhash_ioa(ioa, prepend=None)

	

	
httk.core.crypto.hexhash_str(data, prepend=None)

	

	
httk.core.crypto.main()

	

	
httk.core.crypto.manifest_dir(basedir, manifestfile, excludespath, keydir, sk, pk, debug=False, force=False)

	

	
httk.core.crypto.read_keys(keydir)

	

	
httk.core.crypto.sha256file(filename)

	

	
httk.core.crypto.tuple_to_hexhash(t)

	

	
httk.core.crypto.tuple_to_str(t)

	

	
httk.core.crypto.verify_crytpo_signature(signature, message, public_key=None, keyfile=None)

	

	
httk.core.crypto.verify_crytpo_signature_old(signature, message, public_key_path)

	

 httk.core.ed25519 module

httk.core.ed25519 module

	
httk.core.ed25519.H(m)

	

	
httk.core.ed25519.Hint(m)

	

	
httk.core.ed25519.bit(h, i)

	

	
httk.core.ed25519.checkvalid(s, m, pk)

	

	
httk.core.ed25519.decodeint(s)

	

	
httk.core.ed25519.decodepoint(s)

	

	
httk.core.ed25519.edwards(P, Q)

	

	
httk.core.ed25519.encodeint(y)

	

	
httk.core.ed25519.encodepoint(P)

	

	
httk.core.ed25519.expmod(b, e, m)

	

	
httk.core.ed25519.inv(x)

	

	
httk.core.ed25519.isoncurve(P)

	

	
httk.core.ed25519.main()

	

	
httk.core.ed25519.publickey(sk)

	

	
httk.core.ed25519.scalarmult(P, e)

	

	
httk.core.ed25519.signature(m, sk, pk)

	

	
httk.core.ed25519.xrecover(y)

	

 httk.core.geometry module

httk.core.geometry module

Basic geometry helper functions

	
httk.core.geometry.hull_z(points, zs)

	points: a list of points=(x,y,..) with zs= a list of z values;
a convex half-hull is constructed over negative z-values

returns data on the following format.:

{
 'hull_points': indices in points list for points that make up the convex hull,
 'interior_points':indices for points in the interior,
 'interior_zs':interior_zs
 'zs_on_hull': hull z values for each point (for points on the hull, the value of the hull if this point is excluded)
 'closest_points': list of best linear combination of other points for each point
 'closest_weights': weights of best linear combination of other points for each point
}

where hull_points and interior_points are lists of the points on the hull and inside the hull.
and

hull_zs is a list of z-values that the hull would have at that point, had this point not been included.
interior_zs is a list of z-values that the hull has at the interior points.

	
httk.core.geometry.is_any_part_of_cube_inside_cell(cell, midpoint, side)

	Checks if any part of a cube is inside the cell spanned by the vectors in cell

	
httk.core.geometry.is_point_inside_cell(cell, point)

	Checks if a given triple-vector is inside the cell given by the basis matrix in cell

	
httk.core.geometry.is_point_inside_tetra(tetra, point)

	Checks if a point is inside the tretrahedra spanned by the coordinates in tetra

	
httk.core.geometry.numpy_quickhull_2d(sample)

	

	
httk.core.geometry.simplex_le_solver(a, b, c)

	Minimizie func = a[0]*x + a[1]*y + a[2]*z + …
With constraints:

b[0,0]x + b[0,1]y + b[0,2]z + ... <= c[0]
b[1,0]x + b[1,1]y + b[1,2]z + ... <= c[1]
...
x,y,z, ... >= 0

Algorithm adapted from ‘taw9’, http://taw9.hubpages.com/hub/Simplex-Algorithm-in-Python

 httk.core.httkobject module

httk.core.httkobject module

	
class httk.core.httkobject.HttkObject

	Bases: object

	
get_codependent_data()

	

	
hexhash

	

	
classmethod new_from(other)

	

	
to(newtype)

	

	
to_tuple(use_hexhash=False)

	

	
classmethod types()

	

	
classmethod use(old)

	

	
class httk.core.httkobject.HttkPlugin

	Bases: object

	
class httk.core.httkobject.HttkPluginPlaceholder(plugininfo=None)

	Bases: object

	
class httk.core.httkobject.HttkPluginWrapper(plugin=None)

	Bases: object

	
class httk.core.httkobject.HttkTypedProperty(property_type, fget=None, fset=None, fdel=None, doc=None)

	Bases: property

	
httk.core.httkobject.httk_typed_init(t, **kargs)

	

	
httk.core.httkobject.httk_typed_init_delayed(t, **kargs)

	

	
httk.core.httkobject.httk_typed_property(t)

	

	
httk.core.httkobject.httk_typed_property_delayed(t)

	

	
httk.core.httkobject.httk_typed_property_resolve(cls, propname)

	

 httk.core.ioadapters module

httk.core.ioadapters module

	
class httk.core.ioadapters.IoAdapterFileAppender(f, name=None)

	Bases: object

Io adapter for access to data as a python file object

	
close()

	

	
classmethod use(other)

	

	
class httk.core.ioadapters.IoAdapterFileReader(f, name=None, deletefilename=None, close=False)

	Bases: object

Io adapter for easy handling of io.

	
close()

	

	
classmethod use(other)

	

	
class httk.core.ioadapters.IoAdapterFileWriter(f, name=None, close=False)

	Bases: object

Io adapter for access to data as a python file object

	
close()

	

	
classmethod use(other)

	

	
class httk.core.ioadapters.IoAdapterFilename(filename, name=None, deletefilename=None)

	Bases: object

Universal io adapter, helps handling the passing of filenames, files, and strings to functions that deal with io

	
close()

	

	
classmethod use(other)

	

	
class httk.core.ioadapters.IoAdapterString(string=None, name=None)

	Bases: object

Universal io adapter, helps handling the passing of filenames, files, and strings to functions that deal with io

	
close()

	

	
string

	

	
classmethod use(other)

	

	
class httk.core.ioadapters.IoAdapterStringList(stringlist, name=None)

	Bases: object

Universal io adapter, helps handling the passing of filenames, files, and strings to functions that deal with io

	
classmethod use(other)

	

	
httk.core.ioadapters.cleveropen(filename, mode, *args)

	

	
httk.core.ioadapters.main()

	

	
httk.core.ioadapters.universal_opener(other)

	

	
httk.core.ioadapters.zdecompressor(f, mode, *args)

	Read a classic unix compress .Z type file.

 httk.core.miniparser module

httk.core.miniparser module

LR(1) miniparser

Introduction

A relatively bare-bones LR(1) parser that parses strings into abstract
syntax trees (ast) for generic languages. Python 2 and 3 compatible.
Language grammars can be given in textual EBNF.

A simple usage example:

from miniparser import parser

ls = {
 'ebnf_grammar': """
 S = E ;
 E = T, '+', E ;
 E = T ;
 T = id ;
 """,
 'tokens': {'id': '[a-zA-Z][a-zA-Z0-9_]*'}
}

input_string = "Test + Test"

result = parser(ls, input_string)
print(result)

Usage example of a simple grammar for balanced parentheses. This
also shows using inline regex via an EBNF special sequence:

from miniparser import parser
ls = {
 'ebnf_grammar': """
 Expr = Group
 | Expr , Expr
 | id ;
 Group = '(', Expr, ')' ;
 id = ? [a-zA-Z0-9 _]+ ? ;
 """,
 'remove': ['(',')'],
 'simplify': ['Expr']
}

input_string = "Outer (Inner (Inside) Further outside)"

result = parser(ls, input_string)
print(result)

Note: in the above examples, the parse tables are generated on the
first call to parse, and then cached inside the ‘ls’ dict.
However, if one wants to pre-generate the parse tables (e.g., for
looking at them), that can be done by calling build_ls(ls=ls)
before parse. You can, if you want, save the ‘ls’ variable to disk
(e.g. using pickle). However, since a modern computer builds the parse
tables in a time comparable with starting up the python interpreter,
this may not be so useful.

For documentation on the parameters in the ls dict, see help(build_ls).

Detailed description

This is roughly how the parser operates:

	It takes as input:

	1.1. An EBNF grammar in text format for the language it is

	supposed to parse: ebnf_grammar.

	1.2. Some other meta-info about the language that defines, e.g.,

	terminals (elements that are not further simplified), etc.

1.3. A string to parse.

	The fist time this langague is parsed, the parser builds up the
necessary data structures for the language using the function
build_ls. The steps are:

	2.1. The parser uses itself to parse ebnf_grammar into

	an ast representation of the grammar: ebnf_grammar_ast.

To do this, it uses an already provided ast of the EBNF
language itself (but which can also be recreated by the parser
itself as shown in the examples at the end of the file under
__name__ == “__main__”.)

	2.2. The ebnf_grammar_ast is translated to a more BNF-like abstract

	form that expands alteration, optionals, groupings, and
repetitions into separate rules: bnf_grammar_ast.

	2.3. The bnf_grammar_ast is processed into a rule_table.

	This is a dictionary that maps every symbol to a list of
possible right hand sides in the production rules.

	2.4. The rule_table is used to build a table of the FIRST(symbol)

	function in LR parsing. It maps all symbols on a list of
terminals that may be the very first thing seen in the input
when matching that production rule: first_table.

	2.5. The rule_table`and the `first_table are used to build

	the ACTION and GOTO tables in LR parsing. These encode
a state machine that for every starting state S tells
the machine to either shift or reduce, and when doing so,
the state the machine progresses to: action_table and
goto_table.

	The parse string is processed the python generator lexer,
which splits the input into lexical tokens.

	The LR state machine is initialized in its starting state. Tokens
are read from the lexer, and shift/reduce actions and state changes
are made according to action_table and goto_table. The results
of the parsing are collected on the symbol stack in the from of an ast.

	When all input has been reduced into the starting symbol, the
ast connected to that symbol is returned.

Diagnostic output

	You can add verbosity=<int> as an argument to both the parser and the build_ls
function to get that level of diagnostic output.

	For more fine-tuned output, set verbosity = LogVerbosity(verbosity, [<flags>])
flags can be various flags that can be found in the source code.

Known flags at the time of writing:

	print_all_tokens=True lets makes the parser have the lexer process
all input first and prints all tokens before the parsing starts.

	<function name>_verbosity = <verbosity level> adjusts the verbosity level
for just that one function. For example:

parser(ls, source, verbosity=LogVerbosity(0,parser_verbosity=3))

prints out diagnostic output on level 3 for the parser function, but
skips any other diagnostic output.

	If you do not want the default behavior of printing diagnostic output on stdout,
both parser and build_ls takes the argument logger=<function>, which redirects
all diagnostic output to that function. The function should have the signature:

logger(*args,**kargs):

where the args is the diagnostic info being printed, and the keyword arguments
communicates flags. In particular, pretty=True indicates that complex objects
are passed which would benefit from using, e.g., pprint.pprint to typeset the output.

	
class httk.core.miniparser.LogVerbosity(verbosity, **flags)

	Bases: object

Class to send in as keyword argument for verbosity to fine-tune
diagnostic output from certain functions.

Set the keyword argument as follows:

verbosity = LogVerbosity(verbosity, [<flags>])

flags can be various flags that can be found in the source code, e.g.,
print_all_tokens=True lets makes the parser have the lexer process
all input first and prints all tokens before the parsing starts.

Specifically, set <function name>_verbosity = <verbosity level>
to adjust the verbosity level for just that one function. For example:

parser(ls, source, verbosity=LogVerbosity(0,parser_verbosity=3))

prints out diagnostic output on level 3 for the parser function, but
skips any other diagnostic output.

	
exception httk.core.miniparser.ParserError

	Bases: exceptions.Exception

	
exception httk.core.miniparser.ParserGrammarError

	Bases: httk.core.miniparser.ParserError

	
exception httk.core.miniparser.ParserInternalError

	Bases: httk.core.miniparser.ParserError

	
exception httk.core.miniparser.ParserSyntaxError(*args)

	Bases: httk.core.miniparser.ParserError

	
httk.core.miniparser.build_ls(ebnf_grammar=None, tokens={}, partial_tokens={}, literals=None, precedence=[], ignore=' \t\n', simplify=[], aggregate=[], start=None, skip=[], remove=[], comment_markers=[], ls=None, verbosity=0, logger=<function logger>)

	Build a language specification from an ebnf grammar and some meta-info of the language.

	Args:

	
	ebnf_grammar (str):

	a string containing the ebnf describing the language.

	tokens (dict,optional):

	a dict of token names and the regexs that defines them, they
are considered terminals in the parsing. (They may also be defined
as production rules in the ebnf, but if so, those definitions are ignored.)

	partial_tokens (dict):

	a dictionary that maps token names on
regular expressions for partial token matches.
This is used to allow finding longer matches if
there is intermediate length input that does not
match. E.g., to match 5.32e6 as a number instead
as as Number(5.32) + Identifier(e) + Number(6).

	literals (list of str):

	a list of strings of 1 or more characters which
define literal symbols of the language (i.e, the tokenizer name the
tokens the same as the string), if not given, an attemt is made to
auto-extract them from the grammar.

	precedence (list,optional):

	list of tuples of the format (associativity, symbol, …),
the order of this list defines the precedence of those symbols,
later in the list = higher precedence. The associativity
can be ‘left’, ‘right’, or ‘noassoc’.

	ignore (str,optional):

	a string of characters, or a list of strings for symbols,
which are withheld by the tokenizer. (This is commonly used to skip emitting
whitespace tokens, while still supprting whitespace inside tokens,
e.g., quoted strings.)

	simplify (list,optional):

	a list of symbol identifiers that are simplified away
when the parse tree is generated.

	aggregate (list,optional):

	a list of symbol identifiers that when consituting
consequtive nodes are ‘flattened’, removing the ambiguity of left or right
associativity.

	start (str,optional):

	the start (topmost) symbol of the grammar. A successful
parsing means reducing all input into this symbol.

	remove (list):

	list of symbols to just skip in the output parse tree
(useful to, e.g., skip uninteresting literals).

	skip (list):

	list of rules to completely ignore in the grammar.
(useful to skip rules in a complete EBNF which reduces the tokens
into single characters entities, when one rather wants to handle
those tokens by regex:es by passing the token argument)

	ls (dict):

	As an alternative to giving the above parameters, a dict can
be given with the same attributes as the arguments defined above.

	
httk.core.miniparser.ebnf_unqote(s)

	

	
httk.core.miniparser.lexer(source, tokens, partial_tokens, literals, ignore, comment_markers=[], verbosity=0, logger=<function logger>)

	A generator that turn source into tokens.

	Args:

	
	source (str):

	input string

	tokens (dict):

	a dictonary that maps all tokens of the
language on regular expressions that match them.

	partial_tokens (dict):

	a dictionary that maps token names on
regular expressions for partial token matches.
This is used to allow finding longer matches if
there is intermediate length input that does not
match. E.g., to match 5.32e6 as a number instead
as as Number(5.32) + Identifier(e) + Number(6).

	literals (list):

	a list of single character strings that are
to be treated as literals.

	
httk.core.miniparser.logger(*args, **kargs)

	This is the default logging function for diagnostic output. It
prints the output in args on stdout.

	Args:

	
	loglevel:

	the level designated to the diagnostic output

	args:

	list of arguments to print out

	kargs:

	keyword flags. These are:
pretty=True: formats the output using pprint.pprint(arg).

	
httk.core.miniparser.parser(ls, source, verbosity=0, logger=<function logger>)

	This is a fairly straightforward implementation of an LR(1) parser.
It should do well for parsing somewhat simple grammars.

The parser takes a language specification (ls),
and a string to parse (source). The string is then parsed according
to that ls into a syntax tree, which is returned.

An ls is produced by calling the function build_ls (see help(build_ls))

	Args:

	ls: language specification produced by build_ls.
source: source string to parse.

	
httk.core.miniparser.split_chars_strip_comments(source, comment_markers)

	Helper function for the lexer that reads input and strips comments, while
keeping track of absolute position in the file.

	Args:

	
	source (str):

	input string

	comment_markers (list of tuples):

	a list of entries (start_marker, end_marker)
that designate comments. A marker can be end-of-line or end with end-of-line, but
multiline comment separators are not allowed, i.e., no characters may follow
the end-of-line.

 httk.core.project module

httk.core.project module

	
class httk.core.project.Project(name, description, project_key, keys)

	Bases: httk.core.httkobject.HttkObject

	
add_ref(ref)

	

	
add_refs(refs)

	

	
add_tag(tag, val)

	

	
add_tags(tags)

	

	
classmethod create(name, description, project_key, keys)

	Create a Project object.

	
get_refs()

	

	
get_tag(tag)

	

	
get_tags()

	

	
class httk.core.project.ProjectOwner(project, owner_key)

	Bases: httk.core.httkobject.HttkObject

	
classmethod create(project, owner)

	Create a Project object.

	
class httk.core.project.ProjectRef(project, reference)

	Bases: httk.core.httkobject.HttkObject

	
class httk.core.project.ProjectTag(project, tag, value)

	Bases: httk.core.httkobject.HttkObject

	
httk.core.project.main()

	

 httk.core.reference module

httk.core.reference module

	
class httk.core.reference.Author(last_name, given_names)

	Bases: httk.core.httkobject.HttkObject

Object for keeping track of tags for other objects

	
classmethod create(last_name, given_names)

	Create a Author object.

	
class httk.core.reference.Reference(ref, authors=None, editors=None, journal=None, journal_issue=None, journal_volume=None, page_first=None, page_last=None, title=None, year=None, book_publisher=None, book_publisher_city=None, book_title=None)

	Bases: httk.core.httkobject.HttkObject

A reference citation

	
classmethod create(ref=None, authors=None, editors=None, journal=None, journal_issue=None, journal_volume=None, page_first=None, page_last=None, title=None, year=None, book_publisher=None, book_publisher_city=None, book_title=None)

	Create a Reference object.

	
httk.core.reference.main()

	

 httk.core.signature module

httk.core.signature module

	
class httk.core.signature.Signature(signature_data, key)

	Bases: httk.core.httkobject.HttkObject

	
classmethod create(signature_data, key)

	Create a Computation object.

	
class httk.core.signature.SignatureKey(keydata, description)

	Bases: httk.core.httkobject.HttkObject

	
classmethod create(keydata, description)

	Create a Computation object.

	
httk.core.signature.main()

	

 httk.core.template module

httk.core.template module

	
httk.core.template.apply_template(template, output, envglobals=None, envlocals=None)

	Simple Python template engine.

The file ‘template’ is turned into a new file ‘output’ replacing the following:
$name -> the value of the variable ‘name’ in the scope provided by locals and globals.
$(python statement) -> result of evaluating the python statment.
${some python code} -> text on stdout from running that python code.

Note: it is safe for the code inside the template
to load the file it eventually will replace.

	
httk.core.template.apply_templates(inputpath, outpath, template_suffixes='template', envglobals=None, envlocals=None, mkdir=True)

	Apply one or a series of templates throughout directory tree.

template_suffixes: string or list of strings that are the suffixes of templates that are to be applied.
name: subdirectory in which to apply the template, defaults to last subrun created, or ‘.’ if no subrun have been created.

 httk.db package

httk.db package

Subpackages

	httk.db.backend package
	Submodules
	httk.db.backend.sqlite module

	httk.db.store package
	Submodules
	httk.db.store.dictstore module

	httk.db.store.sqlstore module

	httk.db.store.trivialstore module

Submodules

	httk.db.filteredcollection module

	httk.db.httkobjdbplugin module

	httk.db.storable module

 httk.db.backend package

httk.db.backend package

Submodules

	httk.db.backend.sqlite module

 httk.db.backend.sqlite module

httk.db.backend.sqlite module

This provides a thin abstraction layer for SQL queries, implemented on top of sqlite,3 to make it easier to exchange between SQL databases.

	
class httk.db.backend.sqlite.Sqlite(filename)

	Bases: object

	
class SqliteCursor(db)

	Bases: object

	
close()

	

	
description

	

	
execute(sql, values=[])

	

	
fetchall()

	

	
fetchone()

	

	
alter(sql, values, cursor=None)

	

	
close()

	

	
commit()

	

	
create_table(name, primkey, columnnames, columntypes, cursor=None, index=None)

	

	
cursor()

	

	
get_row(table, primkeyname, primkey, columnnames, cursor=None)

	

	
get_rows(table, primkeyname, primkeys, columnnames, cursor=None)

	

	
get_val(table, primkeyname, primkey, columnname, cursor=None)

	

	
insert(sql, values, cursor=None)

	

	
insert_row(name, columnnames, columnvalues, cursor=None)

	

	
modify_structure(sql, values, cursor=None)

	

	
query(sql, values, cursor=None)

	

	
rollback()

	

	
table_exists(name, cursor=None)

	

	
update(sql, values, cursor=None)

	

	
update_row(name, primkeyname, primkey, columnnames, columnvalues, cursor=None)

	

	
httk.db.backend.sqlite.db_close(connection)

	

	
httk.db.backend.sqlite.db_open(filename)

	

	
httk.db.backend.sqlite.db_sqlite_close_all()

	

 httk.db.store package

httk.db.store package

Stores are abstract keepers of data. The only one properly implemented right now is sqlite, but others are possible.
Trivialstore stores data just in the python classes, and dictstore stores all data in a dictionary.

TODO: Note: since a few changes back I think neither trivialstore or dictstore currently works the way they should.

Submodules

	httk.db.store.dictstore module

	httk.db.store.sqlstore module

	httk.db.store.trivialstore module

 httk.db.store.dictstore module

httk.db.store.dictstore module

	
class httk.db.store.dictstore.DictStore

	Bases: object

Simplified fake database store in a dict, for testing primarily; though it can be used as a fast database-like engine
that enables reterival of data

	
class Keeper(store, table, sid)

	Bases: object

	
puts(**args)

	

	
basics = [<type 'int'>, <type 'float'>, <type 'str'>, <type 'bool'>]

	

	
create_table(table, types)

	

	
get(table, sid, name)

	

	
insert(table, keyvals)

	

	
new(table, types, keyvals)

	

	
put(table, sid, name, val)

	

	
puts(table, sid, **args)

	

	
retrieve(table, types, sid)

	

 httk.db.store.sqlstore module

httk.db.store.sqlstore module

	
class httk.db.store.sqlstore.SqlStore(db)

	Bases: object

Keep objects in an sql database

	
class Keeper(store, table, types, sid)

	Bases: object

	
puts(**args)

	

	
basics = [<type 'int'>, <type 'float'>, <type 'str'>, <type 'bool'>, <class 'httk.core.vectors.fracvector.FracScalar'>]

	

	
commit()

	

	
create_table(table, types, cursor=None)

	

	
delay_commit()

	

	
get(table, sid, types, name)

	

	
insert(table, types, keyvals, cursor=None, updatesid=None)

	

	
new(table, types, keyvals=None, updatesid=None)

	

	
put(table, sid, types, name, val)

	

	
puts(table, sid, **args)

	

	
retrieve(table, types, sid)

	

	
save(obj)

	

	
searcher()

	

 httk.db.store.trivialstore module

httk.db.store.trivialstore module

	
class httk.db.store.trivialstore.TrivialStore

	Bases: object

Very simple storage class that just stores everything into an individual dictionary, just like regular python objects work

	
new(table, types, keyvals)

	

	
retrieve(table, sid)

	

 httk.db.filteredcollection module

httk.db.filteredcollection module

	
class httk.db.filteredcollection.BinaryBooleanOp(context, operator, left, right)

	Bases: httk.db.filteredcollection.Expression

	
class httk.db.filteredcollection.BinaryComparison(context, operator, left, right)

	Bases: httk.db.filteredcollection.Expression

	
class httk.db.filteredcollection.BinaryOp(context, operator, left, right)

	Bases: httk.db.filteredcollection.Expression

	
class httk.db.filteredcollection.DeclaredFunction(context, name, srctable=None)

	Bases: object

	
class httk.db.filteredcollection.Expression(context, exprtype, *args)

	Bases: object

	
get_srctable_context()

	

	
has_any(*args)

	

	
has_inv_any(*args)

	

	
has_inv_only(*args)

	

	
has_only(*args)

	

	
is_in(*args)

	

	
like(*args)

	

	
class httk.db.filteredcollection.FCDict(data=None)

	Bases: httk.db.filteredcollection.FilteredCollection

This implements a filtered collection purely backed by a dictionary and python evaluation.

Note: FCSqliteMemory will usually be faster. (However, you need this class if
you need to express filters and expressions using python functions rather than Sqlite functions.)

	
copy()

	

	
data(outid=None)

	
	Return an object where the attributes are accessible as properties. I.e.

	data = myFCDict.data
myFCDict.set_filter(data.example == data.otherexample*2)

	
function(name)

	Define a python function object for use when expressing filter queries and column expressions.
(You cannot define a filter with a “bare function”, since it would be called
directly at the point of defining the filter.)
Validy/existence of this function is not checked until the collection is iterated over.

	
class httk.db.filteredcollection.FCMultiDict(data=None)

	Bases: httk.db.filteredcollection.FilteredCollection

This class allows you to combine a number of filtered collections and put filters on any combination
of them together. Just create a separate FilteredCollection from each data source, and pass them in
a list to the constructor of this class.

Filters that only apply to one of the FilteredCollections can be put on those collections instead,
while a filter that applies to more than one must be set on this class.

	
add(filterexpr)

	Append a filter to the filters currently filtering the FilteredCollection. When iterating over the
FilteredCollection, a result is only included if it matches all the filters.

	
copy()

	

	
data(name, outid=None)

	Return an object where the attributes of respective filtered collection is
accessible as attributes. An example:

languagereview = FCMultiDict(‘programming’:programming_fc, ‘review’:review_fc)
language = languagereview.data(‘programming’).language
review = languagereview.data(‘review’)
myFCMultiDict.set_filter(language.name == “python” & review.goodness > 9)

	
subdata(name, table, outid=None, key='rowid', subkey=None)

	Return an object where the attributes of respective filtered collection is
accessible as attributes. An example:

languagereview = FCMultiDict(‘programming’:programming_fc, ‘review’:review_fc)
language = languagereview.data(‘programming’).language
review = languagereview.data(‘review’)
myFCMultiDict.set_filter(language.name == “python” & review.goodness > 9)

	
class httk.db.filteredcollection.FCMultiSqlite(dicts=None)

	Bases: httk.db.filteredcollection.FilteredCollection

This class allows you to combine a number of filtered collections and put filters on any combination
of them together. Just create a separate FilteredCollection from each data source, and pass them in
a list to the constructor of this class.

Filters that only apply to one of the FilteredCollections should preferably be put on those collections,
while a filter that applies to more than one must be set on this class, using field definitions made
with this class.

	
class httk.db.filteredcollection.FCSqlite(sqlstore)

	Bases: httk.db.filteredcollection.FilteredCollection

	
count()

	

	
function(name)

	Define a function object for expressing functions in filter queries. Validity/existence of this function
may not be tested until an iteration over matching entries is performed.

	
sql()

	

	
sql_count()

	

	
sql_query()

	

	
store_table(name)

	Store the result of the filtered collection in a new table named ‘name’.

	
subtable(name, table, outid=None, key='rowid', subkey=None)

	Defines a table object to use in filters (for add) and expressions (in set_columns).

	
table(name, outid=None)

	Defines a table object to use in filters (for add) and expressions (in set_columns).

	
class httk.db.filteredcollection.FilteredCollection

	Bases: object

Main interface for filtered collections.

Apart from what is declared here, each subclass should define e.g. ‘table’, ‘column’, ‘function’ methods for
defining fields for use for filters (in, e.g., set_filter) and expressions (in, e.g., set_columns).

	
add(filterexpr)

	Append a filter to the filters currently filtering the FilteredCollection. When iterating over the
FilteredCollection, a result is only included if it matches all the filters.

	
add_all(filterexpr)

	Append a filter to the filters currently filtering the FilteredCollection. When iterating over the
FilteredCollection, a result is only included if it matches all the filters.

	
add_offset(offset)

	

	
add_sort(expression, direction='ASC')

	Define which columns should be included in the results when iterating over a FilteredCollection.
attributes is a list of tuples consisting of (name,definition) where definition can be any
expression in columns.

Default is to show all columns of all tables defined. (See FilteredColleciton.table)

	
duplicate(other)

	

	
output(expression, name=None)

	Define which columns should be included in the results when iterating over a FilteredCollection.
attributes is a list of tuples consisting of (name,definition) where definition can be any
expression in columns.

Default is to show all columns of all tables defined. (See FilteredColleciton.table)

	
reset()

	Clear any filtering done on the data source.

	
set_limit(limit)

	

	
store_table(name)

	Store the result of the filtered collection in a new table named ‘name’.

	
variable(obj, outid=None, parent=None, parentkey=None, subkey=None)

	

	
class httk.db.filteredcollection.Function(context, name, srctable, *args)

	Bases: httk.db.filteredcollection.Expression

	
class httk.db.filteredcollection.TableOrColumn(context, name, parent=None, outid=None, key=None, subkey=None, srctable=None, indirection=1, classref=None)

	Bases: httk.db.filteredcollection.Expression

	
class httk.db.filteredcollection.UnaryBooleanOp(context, operator, right)

	Bases: httk.db.filteredcollection.Expression

	
httk.db.filteredcollection.fc_checkcontext(context, *exprs)

	

	
httk.db.filteredcollection.fc_eval(expr, data)

	

	
httk.db.filteredcollection.fc_get_srctable_context(*args)

	

	
httk.db.filteredcollection.fc_sql(post, expr)

	

	
httk.db.filteredcollection.instantiate_from_store(classobj, store, id)

	

 httk.db.httkobjdbplugin module

httk.db.httkobjdbplugin module

	
class httk.db.httkobjdbplugin.HttkObjDbPlugin

	Bases: httk.core.httkobject.HttkPlugin

	
fetch_codependent_data(store)

	

	
plugin_init(obj)

	

	
store(store, avoid_duplicate=True)

	

	
store_codependent_data(store)

	

 httk.db.storable module

httk.db.storable module

	
class httk.db.storable.Storable(types=None, index=None)

	Bases: object

Superclass for handling various forms of data storage, retreival, etc. Class object representing data should inherit from Storable.

All public variables must be initalized in a call to storable_init() inside __init__().
Other member variables are OK, but must begin with ‘_’, and all methods must handle these variables not being initialized.
For private variables that needs to be preserved: let them start with ‘_’ AND declare them in storable_init().

	
classmethod find_all(obj, store, member, value, types)

	Convinience method to do a very simple search of type: find all entries where member = value.

	
classmethod find_one(obj, store, member, value, types)

	Convinience^2 method to do a very simple search of type: find one entry where member = value.

	
storable_init(store, updatesid=None, **keyvals)

	All Storable objects need to call this method in __init__(). Name should be a ‘somewhat qualified’ class name.

	
trivialstore = <httk.db.storable.TrivialStore object>

	

	
classmethod variable(searcher, name, types, outid=None, parent=None)

	

	
class httk.db.storable.TrivialStore

	Bases: object

Very simple storage class that just stores everything into an individual dictionary, just like regular python objects work

	
new(table, types, keyvals)

	

	
retrieve(table, types, sid)

	

	
httk.db.storable.storable_props(*props)

	

	
httk.db.storable.storable_types(name, *keyvals, **flags)

	

 httk.external package

httk.external package

Submodules

	httk.external.aflow_ext module

	httk.external.ase_glue module

	httk.external.cif2cell_ext module

	httk.external.command module

	httk.external.gulp_ext module

	httk.external.isotropy_ext module

	httk.external.jmol module

	httk.external.numpy_ext module

	httk.external.platon_ext module

	httk.external.pymatgen_glue module

	httk.external.pyspglib_ext module

	httk.external.subimport module

 httk.external.aflow_ext module

httk.external.aflow_ext module

	
httk.external.aflow_ext.aflow(ioa_in, args, timeout=30)

	

	
httk.external.aflow_ext.standard_primitive(struct)

	

 httk.external.ase_glue module

httk.external.ase_glue module

	
class httk.external.ase_glue.StructureAsePlugin

	Bases: httk.core.httkobject.HttkPlugin

	
classmethod from_Atoms(atoms)

	

	
name = 'ase'

	

	
plugin_init(struct)

	

	
to_Atoms()

	

	
httk.external.ase_glue.ase_atoms_to_structure(atoms, hall_symbol)

	

	
httk.external.ase_glue.ase_read_structure(f)

	

	
httk.external.ase_glue.ase_write_struct(struct, ioa, format=None)

	

	
httk.external.ase_glue.coordgroups_reduced_rc_to_unitcellsites(coordgroups, basis, hall_symbol, reduce=False)

	

	
httk.external.ase_glue.ensure_ase_is_imported()

	

	
httk.external.ase_glue.primitive_from_conventional_cell(atoms, spacegroup=1, setting=1)

	Returns primitive cell given an Atoms object for a conventional
cell and it’s spacegroup.

	Code snippet kindly posted by Jesper Friis,

	https://listserv.fysik.dtu.dk/pipermail/ase-users/2011-January/000911.html

	
httk.external.ase_glue.structure_to_ase_atoms(struct)

	

 httk.external.cif2cell_ext module

httk.external.cif2cell_ext module

	
httk.external.cif2cell_ext.cif2cell(cwd, args, timeout=30)

	

	
httk.external.cif2cell_ext.cif_to_structure_noreduce(f)

	

	
httk.external.cif2cell_ext.cif_to_structure_reduce(f)

	

	
httk.external.cif2cell_ext.coordgroups_reduced_rc_to_unitcellsites(coordgroups, basis, hall_symbol)

	

	
httk.external.cif2cell_ext.ensure_has_cif2cell()

	

 httk.external.command module

httk.external.command module

	
class httk.external.command.Command(cmd, args, cwd=None, inputstr=None, stophook=None)

	Bases: object

	
receive()

	

	
run(timeout, debug=False)

	

	
send(command)

	

	
start()

	

	
stdin

	

	
stop()

	

	
wait_finish(timeout=None)

	

	
httk.external.command.find_executable(executables, config_name)

	

 httk.external.gulp_ext module

httk.external.gulp_ext module

	
httk.external.gulp_ext.jmol(cwd, args, timeout=10)

	

	
httk.external.gulp_ext.show(struct)

	

 httk.external.isotropy_ext module

httk.external.isotropy_ext module

	
httk.external.isotropy_ext.ensure_has_isotropy()

	

	
httk.external.isotropy_ext.isotropy(cwd, args, inputstr, timeout=30)

	

	
httk.external.isotropy_ext.struct_process_with_isotropy(struct)

	

	
httk.external.isotropy_ext.uc_reduced_coordgroups_process_with_isotropy(coordgroup, cell, get_wyckoff=False)

	

 httk.external.jmol module

httk.external.jmol module

	
httk.external.jmol.ensure_has_cif2cell()

	

	
httk.external.jmol.main()

	

	
httk.external.jmol.run(cwd, args, timeout=None)

	

	
httk.external.jmol.start(cwd='./', args=['-I'])

	

 httk.external.numpy_ext module

httk.external.numpy_ext module

 httk.external.platon_ext module

httk.external.platon_ext module

	
httk.external.platon_ext.addsym(struct)

	

	
httk.external.platon_ext.addsym_spacegroup(struct)

	

	
httk.external.platon_ext.cif_to_sgstructure(ioa)

	

	
httk.external.platon_ext.ensure_has_platon()

	

	
httk.external.platon_ext.platon(cwd, args, timeout=60)

	

	
httk.external.platon_ext.structure_addsym_and_tidy(struct)

	

	
httk.external.platon_ext.structure_tidy(struct)

	

	
httk.external.platon_ext.structure_tidy_old(struct)

	

	
httk.external.platon_ext.structure_to_sgstructure(struct)

	

 httk.external.pymatgen_glue module

httk.external.pymatgen_glue module

	
httk.external.pymatgen_glue.ensure_pymatgen_is_imported()

	

	
httk.external.pymatgen_glue.set_mp_key(key)

	

 httk.external.pyspglib_ext module

httk.external.pyspglib_ext module

pyspglib external module

	
httk.external.pyspglib_ext.analysis(struct, symprec=1e-05)

	

	
httk.external.pyspglib_ext.ensure_pyspg_is_imported()

	

	
httk.external.pyspglib_ext.primitive(struct, symprec=1e-05)

	

	
httk.external.pyspglib_ext.structure_to_spglib_atoms(struct)

	

 httk.external.subimport module

httk.external.subimport module

	
httk.external.subimport.submodule_import_external(modulepath, pkg)

	

 httk.graphics package

httk.graphics package

Subpackages

	httk.graphics.matplotlib package
	Submodules
	httk.graphics.matplotlib.arrowplot module

	httk.graphics.matplotlib.polygonplot module

 httk.graphics.matplotlib package

httk.graphics.matplotlib package

Submodules

	httk.graphics.matplotlib.arrowplot module

	httk.graphics.matplotlib.polygonplot module

 httk.graphics.matplotlib.arrowplot module

httk.graphics.matplotlib.arrowplot module

 httk.graphics.matplotlib.polygonplot module

httk.graphics.matplotlib.polygonplot module

 httk.httkio package

httk.httkio package

httk Io module

General methods for reading and writing of data, conversions, etc.

Submodules

	httk.httkio.cif module

	httk.httkio.load module

	httk.httkio.save module

 httk.httkio.cif module

httk.httkio.cif module

	
httk.httkio.cif.main()

	

	
httk.httkio.cif.read_cif(ioa, pragmatic=True, use_types=False)

	Generic cif reader, given a filename / ioadapter it places all data in a python dictionary.

It returns a tuple: (header, list)
Where list are pairs of data blocks names and data blocks

Each data block is a dictionary with tag_name:value

For loops, value is another dictionary with format column_name:value

The optional parameter pragmatic regulates handling of some counter-intuitive aspects of the cif specification, where
the default pragmatic=True handles these features the way people usually use them, whereas pragmatic=False means
to read the cif file precisely according to the spec. For example, in a multiline text field:

;
some text
;

Means the string ‘nsome text’. For this specific case pragmatic=True removes the leading newline.

set use_types to True to convert things that look like floats and integers to those respective types

	
httk.httkio.cif.write_cif(ioa, data, header=None, max_line_length=80, use_types=False)

	Generic cif writer, given a filename / ioadapter

data = the cif data to write as an (ordered) dictionary of tag_name:value

header = the header (comment) segment

max_line_length = the maximum number of characters allowed on each line. This should not be set < 80
(there is no point, and the length calculating algorithm breaks down at some small line length)

use_types =

if True: always quote values that are of string type. Numeric values are put in the file unquoted (as they should)
if False (default): also strings that look like cif numbers are put in the file unquoted

For loops, value is another dictionary with format column_name:value

The optional parameter pragmatic regulates handling of some counter-intuitive aspects of the cif specification, where
the default pragmatic=True handles these features the way people usually use them, whereas pragmatic=False means
to read the cif file precisely according to the spec. For example, in a multiline text field:

;
some text
;

Means the string ‘nsome text’. For this specific case pragmatic=True removes the leading newline.

set use_types to True to convert things that look like floats and integers to those respective types

 httk.httkio.load module

httk.httkio.load module

	
httk.httkio.load.load(ioa, ext=None)

	A very generic file reader method.

Load a file into a suitable httk object. Try to do the most sane thing possible given the input file.
If you know what to expect from the input file, it may be safer to use a targeted method for that file type.

 httk.httkio.save module

httk.httkio.save module

	
httk.httkio.save.save(obj, ioa, ext=None)

	A very generic file writer method.

Load a file into a suitable httk object. Try to do the most sane thing possible given the input file.
If you know what to expect from the input file, it may be safer to use a targeted method for that file type.

 httk.httkweb package

httk.httkweb package

Submodules

	httk.httkweb.app_curses module

	httk.httkweb.app_qt5 module

	httk.httkweb.functionhandler_httk module

	httk.httkweb.helpers module

	httk.httkweb.jsonapi module

	httk.httkweb.publish module

	httk.httkweb.render_httk module

	httk.httkweb.render_rst module

	httk.httkweb.serve module

	httk.httkweb.templateengine_httk module

	httk.httkweb.templateengine_templator module

	httk.httkweb.webgenerator module

	httk.httkweb.webserver module

	httk.httkweb.wsgi module

 httk.httkweb.app_curses module

httk.httkweb.app_curses module

	
class httk.httkweb.app_curses.MyHTMLParser

	Bases: HTMLParser.HTMLParser

	
handle_data(data)

	

	
handle_endtag(tag)

	

	
handle_startendtag(tag, attrs)

	

	
handle_starttag(tag, attrs)

	

	
ignore_close_tags = ['meta', 'link', 'br', 'img', 'input']

	

	
ignore_content = ['script', 'style']

	

	
text()

	

	
class httk.httkweb.app_curses.WebviewCurses(appdir)

	Bases: object

	
open_url(url)

	

	
httk.httkweb.app_curses.render_page(stdscr)

	

 httk.httkweb.app_qt5 module

httk.httkweb.app_qt5 module

	
httk.httkweb.app_qt5.run_app(appdir, renderers=None, template_engines=None, function_handlers=None, config='config', debug=True, override_global_data=None)

	

 httk.httkweb.functionhandler_httk module

httk.httkweb.functionhandler_httk module

	
class httk.httkweb.functionhandler_httk.FunctionHandlerHttk(function_dir, function_filename, arg_names, global_data, instanced_template_engine=None)

	Bases: object

	
execute(args=None)

	

	
execute_and_format(args, data)

	

	
get_dependency_filenames()

	

 httk.httkweb.helpers module

httk.httkweb.helpers module

	
class httk.httkweb.helpers.UnquotedStr(val)

	Bases: object

	
httk.httkweb.helpers.identify(topdir, relative_url, ext_to_class_mapper, allow_urls_without_ext=True)

	

	
httk.httkweb.helpers.read_config(srcdir, renderers, default_global_data=None, override_global_data=None, config='config')

	

	
httk.httkweb.helpers.setup(renderers, template_engines, function_handlers)

	

	
httk.httkweb.helpers.setup_template_helpers(global_data)

	

 httk.httkweb.jsonapi module

httk.httkweb.jsonapi module

	
exception httk.httkweb.jsonapi.JsonapiError(message, response_code, response_msg=None, longmsg=None, idstr=None, links=None, code=None, source=None, meta=None, indent=True)

	Bases: httk.httkweb.webserver.WebError

	
httk.httkweb.jsonapi.check_jsonapi_header_requirements(headers)

	

 httk.httkweb.publish module

httk.httkweb.publish module

	
httk.httkweb.publish.publish(srcdir, outdir, baseurl, renderers=None, template_engines=None, function_handlers=None, config='config', override_global_data=None)

	

 httk.httkweb.render_httk module

httk.httkweb.render_httk module

	
class httk.httkweb.render_httk.RenderHttk(render_dir, render_filename, global_data)

	Bases: object

	
adornment_chars = ['!', '"', '#', '$', '%', '&', "'", '(', ')', '*', '+', ',', '-', '.', '/', ':', ';', '<', '=', '>', '?', '@', '[', '\\', ']', '^', '_', '`', '{', '|', '}', '~']

	

	
bullet_item_markers = ['- ', '* ', '+ ']

	

	
content()

	

	
left_punctuation_chars = '\'[({<:"; -'

	

	
make_id(s)

	

	
metadata()

	

	
option_list_characters = ['-', '/']

	

	
right_punctuation_chars = ']\')}>:,!.?"; -'

	

	
rst_light_html_renderer(content)

	

	
rst_light_parse_textstyle(content, start_marker, end_marker, style, allow_nested=False, unescape=True, handle_roles=False, handle_hyperlinks=False)

	

	
rst_light_parser(source)

	

	
split_content(source)

	

 httk.httkweb.render_rst module

httk.httkweb.render_rst module

	
class httk.httkweb.render_rst.RenderRst(render_dir, render_filename, global_data)

	Bases: object

	
content()

	

	
metadata()

	

 httk.httkweb.serve module

httk.httkweb.serve module

	
httk.httkweb.serve.serve(srcdir, port=80, baseurl=None, renderers=None, template_engines=None, function_handlers=None, debug=True, config='config', override_global_data=None)

	

 httk.httkweb.templateengine_httk module

httk.httkweb.templateengine_httk module

	
class httk.httkweb.templateengine_httk.HttkTemplateFormatter

	Bases: string.Formatter

	
format_field(value, spec, quote=None, args=None, kwargs=None)

	

	
get_field(field_name, args, kwargs)

	

	
vformat(format_string, args, kwargs, used_args=None, recursion_depth=None)

	

	
class httk.httkweb.templateengine_httk.TemplateEngineHttk(template_dir, template_filename, base_template_filename=None)

	Bases: object

	
apply(content=None, data=None, *subcontent)

	

	
get_dependency_filenames()

	

 httk.httkweb.templateengine_templator module

httk.httkweb.templateengine_templator module

	
class httk.httkweb.templateengine_templator.TemplateEngineTemplator(template_dir, template_filename, base_template_filename=None)

	Bases: object

	
apply(content=None, data=None, *subcontent)

	

	
get_dependency_filenames()

	

 httk.httkweb.webgenerator module

httk.httkweb.webgenerator module

	
class httk.httkweb.webgenerator.Page(meta={})

	Bases: object

	
update_metadata(meta)

	

	
class httk.httkweb.webgenerator.WebGenerator(srcdir, global_data, renderers, template_engines, function_handlers)

	Bases: object

	
retrieve(relative_url, query=None, allow_urls_without_ext=None, all_functions=False)

	

 httk.httkweb.webserver module

httk.httkweb.webserver module

	
exception httk.httkweb.webserver.WebError(message, response_code, response_msg, longmsg=None, content_type='text/plain', encoding='utf-8')

	Bases: exceptions.Exception

	
httk.httkweb.webserver.startup(get_callback, post_callback=None, error_callback=None, port=80, netloc=None, basepath='/', debug=False)

	

 httk.httkweb.wsgi module

httk.httkweb.wsgi module

	
httk.httkweb.wsgi.wsgi_get_request(environ)

	

 httk.iface package

httk.iface package

httk Interface module

	The interface between httk and other software. Note: the idea is that this module should be useable without
the other software installed. E.g., generation of input files to gulp shouldn’t require gulp installed.

Submodules

	httk.iface.ase_if module

	httk.iface.cif2cell_if module

	httk.iface.gulp_if module

	httk.iface.isotropy_if module

	httk.iface.jmol_if module

	httk.iface.openbabel_if_notstable module

	httk.iface.platon_if module

	httk.iface.spglib_if module

	httk.iface.vasp_if module

 httk.iface.ase_if module

httk.iface.ase_if module

	
httk.iface.ase_if.rc_structure_to_symbols_and_scaled_positions(struct)

	

	
httk.iface.ase_if.uc_structure_to_symbols_and_scaled_positions(struct)

	

 httk.iface.cif2cell_if module

httk.iface.cif2cell_if module

	
httk.iface.cif2cell_if.out_to_struct(ioa)

	Example input:

OUTPUT CELL INFORMATION
Symmetry information:
Trigonal crystal system.
Space group number : 165
Hall symbol : -P 3 2"c
Hermann-Mauguin symbol : P-3c1

Bravais lattice vectors :
 0.8660254 -0.5000000 0.0000000
 0.0000000 1.0000000 0.0000000
 0.0000000 0.0000000 1.0231037
All sites, (lattice coordinates):
Atom a1 a2 a3
La 0.6609000 0.0000000 0.2500000
La 0.3391000 0.0000000 0.7500000
...
F 0.0000000 0.0000000 0.2500000
F 0.0000000 0.0000000 0.7500000

Unit cell volume : 328.6477016 A^3
Unit cell density : 3.5764559 u/A^3 = 5.9388437 g/cm^3

 httk.iface.gulp_if module

httk.iface.gulp_if module

	
httk.iface.gulp_if.generate_fake_potentials(species)

	

	
httk.iface.gulp_if.generate_fake_potentials_try2(species)

	

	
httk.iface.gulp_if.structure_to_gulp(iof, struct, runspec='single conp', postcards=[], potentials=None)

	Writes a file on gulp input format.

 httk.iface.isotropy_if module

httk.iface.isotropy_if module

	
httk.iface.isotropy_if.out_to_cif(ioa, assignments, getwyckoff=False)

	

	
httk.iface.isotropy_if.reduced_coordgroups_to_input(coordgroups, cell, comment='FINDSYM input', accuracy=0.001)

	

	
httk.iface.isotropy_if.struct_to_input(struct)

	

 httk.iface.jmol_if module

httk.iface.jmol_if module

	
httk.iface.jmol_if.structure_to_jmol(iof, struct, extbonds=True, repeat=None, copies=None)

	Converts structure into jmol format.

	Example output format::

	load data ‘model’
1
Computation1
Al 0 0 0
end ‘model’ { 4 4 4 } supercell “x, y, z ” unitcell [
2.025 2.025 0
2.025 0 2.025
0 2.025 2.025
]
set slabByAtom TRUE
unitcell {1/1 1/1 1/1}
delete (NOT (unitcell OR connected(unitcell)))
{connected(unitcell) AND NOT unitcell}.radius = 0
restrict cell={2 2 2}
center visible
zoom 0

 httk.iface.openbabel_if_notstable module

httk.iface.openbabel_if_notstable module

	
httk.iface.openbabel_if_notstable.readstruct(ioa, struct, importers=None)

	

 httk.iface.platon_if module

httk.iface.platon_if module

This module is a mess and in need of heavy cleanup.

	
httk.iface.platon_if.get_stidy_spacegroup(parse)

	

	
httk.iface.platon_if.platon_lis_to_struct_broken(ioa)

	Example input format:

 ============
== Crystal Data ==
 ============
 Input Cell (Lattice Type: P) - Temp = 0K Reduced Cell (Acta Cryst.(1976),A32,297-298)
--- --
a = 3.47100 Angstrom alpha = 90 Degree a = 3.471 alpha = 90.00 V = 79.6
b = 3.47100 beta = 90 b = 3.471 beta = 90.00
c = 6.60300 gamma = 90 c = 6.603 gamma = 90.00

...

--
Flags Label Fractional Coordinates (x,y,z) Orthogonal Coordinates (XO,YO,ZO) Site SSN*SSOF = S.O.F Move Type
--
- Ag(1) 1/4 1/4 0.61200 0.8677 0.8677 4.0410 4mm 8 1/8 1 - Met
- Zr(2) 1/4 1/4 0.13700 0.8677 0.8677 0.9046 4mm 8 1/8 1 - Met
- Ag(1)a -1/4 -1/4 -0.61200 -0.8677 -0.8677 -4.0410 4mm 8 1/8 1 5.455 Met
- Zr(2)a -1/4 -1/4 -0.13700 -0.8677 -0.8677 -0.9046 4mm 8 1/8 1 5.455 Met
- Ag(1)b -1/4 -1/4 0.38800 -0.8678 -0.8678 2.5620 4mm 8 1/8 1 5.456 Met
- Zr(2)b -1/4 -1/4 0.86300 -0.8678 -0.8678 5.6984 4mm 8 1/8 1 5.456 Met
- Ag(1)c -1/4 3/4 -0.61200 -0.8677 2.6033 -4.0410 4mm 8 1/8 1 5.465 Met
- Zr(2)c -1/4 3/4 -0.13700 -0.8678 2.6033 -0.9046 4mm 8 1/8 1 5.465 Met
- Ag(1)d -1/4 3/4 0.38800 -0.8678 2.6033 2.5620 4mm 8 1/8 1 5.466 Met
- Zr(2)d -1/4 3/4 0.86300 -0.8678 2.6032 5.6984 4mm 8 1/8 1 5.466 Met
- Ag(1)e 3/4 -1/4 -0.61200 2.6033 -0.8677 -4.0410 4mm 8 1/8 1 5.555 Met
- Zr(2)e 3/4 -1/4 -0.13700 2.6033 -0.8677 -0.9046 4mm 8 1/8 1 5.555 Met
- Ag(1)f 3/4 -1/4 0.38800 2.6033 -0.8678 2.5620 4mm 8 1/8 1 5.556 Met
- Zr(2)f 3/4 -1/4 0.86300 2.6032 -0.8678 5.6984 4mm 8 1/8 1 5.556 Met
- Ag(1)g 3/4 3/4 -0.61200 2.6033 2.6033 -4.0410 4mm 8 1/8 1 5.565 Met
- Zr(2)g 3/4 3/4 -0.13700 2.6033 2.6033 -0.9046 4mm 8 1/8 1 5.565 Met
- Ag(1)h 3/4 3/4 0.38800 2.6033 2.6033 2.5620 4mm 8 1/8 1 5.566 Met
- Zr(2)h 3/4 3/4 0.86300 2.6032 2.6032 5.6984 4mm 8 1/8 1 5.566 Met
==

	
httk.iface.platon_if.platon_lis_to_struct_broken2(ioa)

	Example input:

 ============
== Crystal Data ==
 ============
 Input Cell (Lattice Type: P) - Temp = 0K Reduced Cell (Acta Cryst.(1976),A32,297-298)
--- --
a = 3.47100 Angstrom alpha = 90 Degree a = 3.471 alpha = 90.00 V = 79.6
b = 3.47100 beta = 90 b = 3.471 beta = 90.00
c = 6.60300 gamma = 90 c = 6.603 gamma = 90.00

...

==
10.0 Angstrom Coordination Sphere Around Atom I = Ag(1) [ARU = 1555.01] 1/4 1/4 0.61200 0.8677 0.8677 4.0410
--
 Nr d(I,J) To Atom J Symm_Oper. on Atom J ARU(J) Type Phi Mu X Y Z XO YO ZO
--
 1 2.9615 -- Zr(4) [=] Intra-135.00 34.03 -1/4 -1/4 0.86300 -0.8678 -0.8678 5.6984
 2 2.9615 -- Zr(4)n [1+x,1+y,z = 1665.01] Intra 45.00 34.03 3/4 3/4 0.86300 2.6032 2.6032 5.6984
 3 2.9615 -- Zr(4)j [x,1+y,z = 1565.01] Intra 135.00 34.03 -1/4 3/4 0.86300 -0.8678 2.6032 5.6984
 4 2.9615 -- Zr(4)l [1+x,y,z = 1655.01] Intra -45.00 34.03 3/4 -1/4 0.86300 2.6032 -0.8678 5.6984
 5 3.1364 -- Zr(3) [=] Intra 0.00 -90.00 1/4 1/4 0.13700 0.8677 0.8677 0.9046

	
httk.iface.platon_if.platon_sites_to_styin(ioa, sites, cell)

	Example input:

P 4 B M
 5.5179 5.5179 3.9073 90.0000 90.0000 90.0000
Bi1 0.50000 0.00000 0.54500 0.50000
Ti1 0.00000 0.00000 0.00000
Na1 0.50000 0.00000 0.54500 0.50000
O1 0.00000 0.00000 0.51000
O2 0.72900 0.22900 0.01500
END
END

	
httk.iface.platon_if.platon_styin_to_sgstruct(ioa)

	Example input:

F -4 3 M id=[0] dblock_code=[44325-ICSD] formula=
5.5000 5.5000 5.5000 90.0000 90.0000 90.0000
N
Sb1 0.25000 0.25000 0.25000
Al1 0.00000 0.00000 0.00000
END
END

	
httk.iface.platon_if.platon_styout_to_sgstruct(ioa)

	Example input:

Results for id=[0] dblock_code=[44325-I New: F-43m
===

Pearson code : cF 8 Sb 4.0 Al 4.0
Cell parameters : 7.7782 7.7782 7.7782 90.000 90.000 90.000
Space group symbol : F -4 3 m Number in IT : 216

Setting x,y,z Origin (0.0000 0.0000 0.0000) Gamma = 0.4330

 Al1 4(c) 1/4 1/4 1/4 Al 1
 Sb1 4(a) 0 0 0 Sb 1

Wyckoff sequence : c a

Volume of Unit Cell : 470.5842

OTHER Standardization with Similar Gamma :

Setting -x,-y,-z Origin (0.7500 0.7500 0.7500) Gamma = 0.4330

 Sb1 4(c) 1/4 1/4 1/4 Sb 1
 Al1 4(a) 0 0 0 Al 1

Wyckoff sequence : c a

Volume of Unit Cell : 470.5842

	
httk.iface.platon_if.platon_styout_to_structure(ioa, based_on_struct=None)

	Example input:

Results for id=[0] dblock_code=[44325-I New: F-43m
===

Pearson code : cF 8 Sb 4.0 Al 4.0
Cell parameters : 7.7782 7.7782 7.7782 90.000 90.000 90.000
Space group symbol : F -4 3 m Number in IT : 216

Setting x,y,z Origin (0.0000 0.0000 0.0000) Gamma = 0.4330

 Al1 4(c) 1/4 1/4 1/4 Al 1
 Sb1 4(a) 0 0 0 Sb 1

Wyckoff sequence : c a

Volume of Unit Cell : 470.5842

OTHER Standardization with Similar Gamma :

Setting -x,-y,-z Origin (0.7500 0.7500 0.7500) Gamma = 0.4330

 Sb1 4(c) 1/4 1/4 1/4 Sb 1
 Al1 4(a) 0 0 0 Al 1

Wyckoff sequence : c a

Volume of Unit Cell : 470.5842

	
httk.iface.platon_if.sites_to_platon(ioa, sites, cell, precards, postcards)

	Writes a file on PLATONS input format.

	
httk.iface.platon_if.structure_to_platon(ioa, struct, precards, postcards)

	Writes a file on PLATONS input format.

 httk.iface.spglib_if module

httk.iface.spglib_if module

	
httk.iface.spglib_if.spglib_out_to_struct(out)

	

 httk.iface.vasp_if module

httk.iface.vasp_if module

	
class httk.iface.vasp_if.OutcarReader(ioa)

	
	
parse()

	

	
httk.iface.vasp_if.calculate_kpoints(struct, dens=20)

	

	
httk.iface.vasp_if.copy_template(dirtemplate, dirname, templatename)

	

	
httk.iface.vasp_if.get_magmom(symbol)

	

	
httk.iface.vasp_if.get_magnetizations(ionlist, high, low)

	

	
httk.iface.vasp_if.get_pseudopotential(species, poscarspath=None)

	

	
httk.iface.vasp_if.is_dualmagnetic(ion, ionlist)

	

	
httk.iface.vasp_if.magnetization_recurse(basemags, dualmags, high, low)

	

	
httk.iface.vasp_if.poscar_to_strs(fio, included_decimals='')

	
	Parses a file on VASPs POSCAR format. Returns

	(cell, scale, vol, coords, coords_reduced, counts, occupations, comment)

	where

	cell: 3x3 nested list of strings designating the cell
scale: string representing the overall scale of the cell
vol: string representing the volume of the cell (only one of scale and vol will be set, the other one = None)
coords: Nx3 nested list of strings designating the coordinates
coords_reduced: bool, true = coords are given in reduced coordinate (in vasp D or Direct), false = coords are given in cartesian coordinates
counts: how many atoms of each type
occupations: which species of each atom type (integers), or -1, … -N if no species are given.
comment: the comment string given at the top of the file

	
httk.iface.vasp_if.poscar_to_structure(f, included_decimals='', structure_class=<class 'httk.atomistic.structure.Structure'>)

	

	
httk.iface.vasp_if.prepare_single_run(dirpath, struct, poscarspath=None, template='t:/vasp/single/static', overwrite=False)

	

	
httk.iface.vasp_if.read_outcar(ioa)

	

	
httk.iface.vasp_if.structure_to_comment(struct)

	

	
httk.iface.vasp_if.structure_to_poscar(f, struct, fix_negative_determinant=False, comment=None, primitive_cell=True)

	

	
httk.iface.vasp_if.write_generic_kpoints_file(fio, comment=None, mp=True)

	

	
httk.iface.vasp_if.write_kpoints_file(fio, kpoints, comment=None, mp=True, gamma_centered=False)

	

	
httk.iface.vasp_if.write_poscar(fio, cell, coords, coords_reduced, counts, occupations, comment='Comment', scale='1', vol=None)

	Writes a file on VASPs POSCAR format. Where it says string below, any type that works with str(x) is also ok.

	Input arguments

	f: file stream to put output on
cell: 3x3 nested list of strings designating the cell
coords: Nx3 nested list of strings designating the coordinates
coords_reduced: bool, true = coords are given in reduced coordinate (in vasp D or Direct), false = coords are given in cartesian coordinates
counts: how many atoms of each type
occupations: which species of each atom type
comment: (optional) the comment string given at the top of the file
scale: (optional) string representing the overall scale of the cell
vol: string representing the volume of the cell (only one of scale and vol can be set)

 httk.optimade package

httk.optimade package

Subpackages

	httk.optimade.validation package
	Submodules
	httk.optimade.validation.all module

	httk.optimade.validation.base_info module

	httk.optimade.validation.entry module

	httk.optimade.validation.exception module

	httk.optimade.validation.headers module

	httk.optimade.validation.request module

	httk.optimade.validation.response module

Submodules

	httk.optimade.entry_endpoint module

	httk.optimade.error module

	httk.optimade.httk_entries module

	httk.optimade.httk_execute_query module

	httk.optimade.info_endpoint module

	httk.optimade.meta module

	httk.optimade.optimade_entries module

	httk.optimade.optimade_filter_to_httk module

	httk.optimade.parse_optimade_filter module

	httk.optimade.process module

	httk.optimade.serve module

	httk.optimade.validate module

	httk.optimade.versions module

 httk.optimade.validation package

httk.optimade.validation package

Submodules

	httk.optimade.validation.all module

	httk.optimade.validation.base_info module

	httk.optimade.validation.entry module

	httk.optimade.validation.exception module

	httk.optimade.validation.headers module

	httk.optimade.validation.request module

	httk.optimade.validation.response module

 httk.optimade.validation.all module

httk.optimade.validation.all module

	
httk.optimade.validation.all.run(base_url, tests=None)

	

 httk.optimade.validation.base_info module

httk.optimade.validation.base_info module

	
httk.optimade.validation.base_info.validate_base_info(json)

	

	
httk.optimade.validation.base_info.validate_base_info_request(base_url, relurl='/info')

	

 httk.optimade.validation.entry module

httk.optimade.validation.entry module

	
httk.optimade.validation.entry.validate_single_entry_request(base_url, relurl='/structures')

	

 httk.optimade.validation.exception module

httk.optimade.validation.exception module

 httk.optimade.validation.headers module

httk.optimade.validation.headers module

	
httk.optimade.validation.headers.validate_headers(base_url, relurl='/info')

	

 httk.optimade.validation.request module

httk.optimade.validation.request module

	
exception httk.optimade.validation.request.RequestError(msg, code)

	Bases: exceptions.Exception

	
httk.optimade.validation.request.request(url, headers=None)

	

 httk.optimade.validation.response module

httk.optimade.validation.response module

	
httk.optimade.validation.response.validate_response(json, expect_error=False)

	

	
httk.optimade.validation.response.validate_response_request(base_url, relurl)

	

 httk.optimade.entry_endpoint module

httk.optimade.entry_endpoint module

	
httk.optimade.entry_endpoint.generate_entry_endpoint_reply(request, config, data)

	

	
httk.optimade.entry_endpoint.generate_single_entry_endpoint_reply(request, config, data)

	

 httk.optimade.error module

httk.optimade.error module

	
exception httk.optimade.error.OptimadeError(message, response_code, response_message, longmsg=None)

	Bases: exceptions.Exception

	
exception httk.optimade.error.TranslatorError(message, response_code, response_message, longmsg=None)

	Bases: httk.optimade.error.OptimadeError

	
httk.optimade.error.format_optimade_error(ex, request, config, version='1.0.0')

	

 httk.optimade.httk_entries module

httk.optimade.httk_entries module

 httk.optimade.httk_execute_query module

httk.optimade.httk_execute_query module

	
class httk.optimade.httk_execute_query.HttkResults(searcher, response_fields, unknown_response_fields, limit, offset)

	Bases: object

	
count()

	

	
next()

	

	
httk.optimade.httk_execute_query.httk_execute_query(store, entries, response_fields, unknown_response_fields, response_limit, response_offset, optimade_filter_ast=None, debug=False)

	

 httk.optimade.info_endpoint module

httk.optimade.info_endpoint module

	
httk.optimade.info_endpoint.generate_base_endpoint_reply(request, config)

	

	
httk.optimade.info_endpoint.generate_entry_info_endpoint_reply(request, config, entry)

	

	
httk.optimade.info_endpoint.generate_info_endpoint_reply(request, config)

	This just returns a hardcoded introspection string.

	
httk.optimade.info_endpoint.generate_links_endpoint_reply(request, config)

	

	
httk.optimade.info_endpoint.generate_versions_endpoint_reply(request, config)

	

 httk.optimade.meta module

httk.optimade.meta module

	
httk.optimade.meta.generate_meta(request, config, data_count=None, more_data_available=False, data_available=None)

	

 httk.optimade.optimade_entries module

httk.optimade.optimade_entries module

 httk.optimade.optimade_filter_to_httk module

httk.optimade.optimade_filter_to_httk module

This file provides functions to translate an OPTIMaDe filter string into an SQL query.

	
httk.optimade.optimade_filter_to_httk.constant_comparison_handler(val1, op, val2, search_variable)

	

	
httk.optimade.optimade_filter_to_httk.constant_set_handler(val1, ops, val2, has_type, inv, search_variable)

	

	
httk.optimade.optimade_filter_to_httk.constant_stringmatching_handler(val1, op, val2, stringmatching_type, search_variable)

	

	
httk.optimade.optimade_filter_to_httk.false_handler(search_variable)

	

	
httk.optimade.optimade_filter_to_httk.format_value(fulltype, val, allow_null=False)

	

	
httk.optimade.optimade_filter_to_httk.known_unknown_handler(entry, search_variable, unknown_type)

	

	
httk.optimade.optimade_filter_to_httk.number_handler(entry, op, value, search_variable)

	

	
httk.optimade.optimade_filter_to_httk.optimade_filter_to_httk(filter_ast, entries, searcher)

	

	
httk.optimade.optimade_filter_to_httk.optimade_filter_to_httk_recurse(node, search_variable, entry, inv_toggle, recursion=0)

	

	
httk.optimade.optimade_filter_to_httk.set_handler(entry, ops, values, inv, has_type, search_variable)

	

	
httk.optimade.optimade_filter_to_httk.string_handler(entry, op, value, search_variable)

	

	
httk.optimade.optimade_filter_to_httk.stringmatching_handler(entry, value, stringmatching_type, search_variable)

	

	
httk.optimade.optimade_filter_to_httk.structure_features_length_handler(op, value, search_variable)

	

	
httk.optimade.optimade_filter_to_httk.structure_features_set_handler(values, ops, inv, has_type, search_variable)

	

	
httk.optimade.optimade_filter_to_httk.timestamp_handler(entry, op, value, search_variable)

	

	
httk.optimade.optimade_filter_to_httk.true_handler(search_variable)

	

	
httk.optimade.optimade_filter_to_httk.unknown_comparison_handler(entry, ops, values, search_variable)

	

	
httk.optimade.optimade_filter_to_httk.unknown_has_handler(entry, op, value, search_variable, has_type, inv_toggle)

	

	
httk.optimade.optimade_filter_to_httk.unknown_length_handler(entry, op, value, search_variable)

	

	
httk.optimade.optimade_filter_to_httk.unknown_stringmatching_handler(entry, values, stringmatching_type, search_variable)

	

	
httk.optimade.optimade_filter_to_httk.unknown_unknown_handler(entry, search_variable, unknown_type)

	

 httk.optimade.parse_optimade_filter module

httk.optimade.parse_optimade_filter module

	
httk.optimade.parse_optimade_filter.initialize_optimade_parser()

	

	
httk.optimade.parse_optimade_filter.optimade_parse_tree_to_ojf(ast)

	

	
httk.optimade.parse_optimade_filter.optimade_parse_tree_to_ojf_recurse(node, recursion=0)

	

	
httk.optimade.parse_optimade_filter.parse_optimade_filter(filter_string, verbosity=0)

	

	
httk.optimade.parse_optimade_filter.parse_optimade_filter_raw(filter_string, verbosity=0)

	

 httk.optimade.process module

httk.optimade.process module

	
httk.optimade.process.process(request, query_function, version, config, debug=False)

	Process an optimade query.

	Args:

	
	request: a dict with these entries:

	
baseurl (required): the base url that serves the OPTIMaDe API.
representation (mandatory): the string with the part of the URL that follows the base URL. This must always be provided, because

the OPTIMaDe specification requires this to be part of the output in the meta section (meta -> query -> representation).

	relurl (optional): the part of the URL that follows the base URL but without query parameters.

	Include this if the web-serving framework provides this, i.e., if it splits off the query part for you.

endpoint (optional): the endpoint being requested
request_id (optional): a specific entry id being requested.
querystr (optional): a string that defines the query parameters that follows the base URL and the relurl and a single ‘?’.
query (optional): a dictionary representation of the query part of the URL.

missing information is derived from the ‘representation’ string.

	query_function: a callback function of signature

	
query_function(entries, response_fields, response_limit, filter_ast, debug)

	with:

	entries: list of optimade entries to run the query for, usually just the entry type requested by the end point.
response_fields: which fields should be present in the output
response_limit: the maximum number of results to return
filter_ast: an abstract syntax tree representing the optimade filter requested
debug: if set to true, print debug information to stdout.

returns an OptimadeResults object.

	
httk.optimade.process.process_init(config, query_function, debug=False)

	

 httk.optimade.serve module

httk.optimade.serve module

	
httk.optimade.serve.format_output(output)

	

	
httk.optimade.serve.serve(store, config=None, port=80, baseurl=None, debug=False)

	

 httk.optimade.validate module

httk.optimade.validate module

	
httk.optimade.validate.determine_optimade_version(request)

	

	
httk.optimade.validate.validate_optimade_request(request, version)

	

 httk.optimade.versions module

httk.optimade.versions module

 httk.task package

httk.task package

Submodules

	httk.task.reader module

	httk.task.taskmgr module

 httk.task.reader module

httk.task.reader module

	
httk.task.reader.main()

	

	
httk.task.reader.read_manifest(ioa, verify_signature=True)

	

	
httk.task.reader.reader(projectpath, inpath, excludes=None, default_description=None, project_counter=0, force_remake_manifests=False)

	Read and yield all tasks from the project in path

	
httk.task.reader.submit_reader(projectpath, default_description=None, excludes=None, project=None, project_counter=0)

	Read and yield all tasks from the project in path

For ‘submitted’ projects that already have manifests and should not be altered in any way.

 httk.task.taskmgr module

httk.task.taskmgr module

	
httk.task.taskmgr.create_batch_task(dirpath, template='t:vasp/batch/vasp-relax-formenrg', args=None, project='noproject', assignment='unassigned', instantiate_name='ht.instantiate.py', overwrite=False, overwrite_head_dir=True, remove_instantiate=True, name=None, priority=3)

	

 httk.cli module

httk.cli module

	
httk.cli.main()

	

 httk.versioning module

httk.versioning module

 httk Installation Instructions

httk Installation Instructions

Installation

There are a few alternative ways to download and install httk. Httk
presently consists of a python library and a few programs. If you just
want access to use the python library, and do not need the external
programs, the install is very easy.

Note: for httk version 2.0 we will go over to a single program
(‘python endpoint’) httk, for which the pip install step should be
sufficient to get a full install.

(There are also separate instructions below for advanced users that
want to do a direct manual install without the Python pip installed.)

Alternative 1: Install via pip to just access the python library

	You need Python 2.7 and access to pip in your terminal
window. (You can get Python and pip, e.g., by installing the Python 2.7 version
of Anaconda, https://www.anaconda.com/download, which should give you
all you need on Linux, macOS and Windows.)

	Issue in your terminal window:

pip install httk

If you at a later point want to upgrade your installation, just
issue:

pip install httk --upgrade

You should now be able to simply do import httk in your python programs to use the httk python library.

Alternative 2: Install via pip for python library + binaries + ability to develop httk

	In addition to Python 2.7 and pip, you also need git.
You can get git from here: https://git-scm.com/

	Issue in your terminal window:

git clone https://github.com/rartino/httk
cd httk
pip install --editable . --user

If you at a later point want to upgrade your installation, just go
back to the httk directory and issue:

git pull
pip install . --upgrade --user

	To setup the paths to the httk programs you also need to run:

source /path/to/httk/init.shell

where /path/to/httk should be the path to where you downloaded
httk in the steps above. To make this permanent, please add this
line to your shell initialization script, e.g., ~/.bashrc

You are now ready to use httk.

Notes:

	The above instructions give you access to the latest stable release of httk.
To get the latest developer relase (which may or may not work), issue:

git checkout devel
pip install . --upgrade --user

in your httk directory. To switch back to the stable release, do:

git checkout master
pip install . --upgrade --user

	An alternative to installing with pip install is to just run httk out of the
httk directory. In that case, skip the pip install step above and just append
source ~/path/to/httk/init.shell to your shell init files,
with ~/path/to/httk replaced by the path of your httk directory.)*

Alternative 3: For experienced users: direct manual install

If you are somewhat familiar with the command line in Linux, Unix,
MacOSX or cygwin, and don’t want to mess with python, all you need to
do is download the archive (see:
http://httk.openmaterialsdb.se/downloads.html) uncompress it in a
directory of your choosing, and configure your environment in your
environment init file (.bashrc or .cshrc) either by inserting source
/path/to/.../httk/init.shell or by inserting instructions that adds
the httk/bin directory to your PATH environment variable, and
the httk directory to your PYTHONPATH environment variable.

That is all that is needed. As your first test, you can try to run
Examples/0_import_httk/0_import_httk.py. (Please be aware that the
first time you run this command it can be rather slow, since python is
creating *.pyc files for all httk modules.)

Alternative 4: Step-by-step instructions for installation from archive

Find the latest relase download at this link: https://github.com/rartino/httk/releases/latest, and get the link to the
httk-<version>.tgz archive.

Run the following in a terminal:

mkdir -p ~/bin/python
cd ~/bin/python
curl -L <download link> --output httk-<version>.tgz
tar -zxf httk-<version>.tgz
rm -f httk-<version>.tgz

where you have to fill in <download link> and <version> according to the release page.

The archive extaction (tar -zxf) will have created a subdirectory
named after the actual version of httk that you downloaded. Check this
with the command ls. Lets say you see httk-1.1.2, then do the
following:

ln -f -s httk-1.1.2 httk-latest
source ~/bin/python/httk-latest/init.shell

If you add the very last line to your .bashrc and/or .cshrc, httk will work in all new terminals you open. (Or alternatively, just add
~/bin/python/httk-latest/bin/ to your PATH environment variable, and
~/bin/python/httk-latest to your PYTHONPATH environment varibale.) If you cannot figure out how to do this on your system, you will have to re-run source ~/bin/python/httk-latest/setup.shell every time you want to use httk.

You can now start using httk. There is no further compiling, etc. required.

As your first test, you can try to run:

~/bin/python/httk-latest/Examples/0_import_httk/0_import_httk.py

This program simply loads the httk library and prints out its version, if everything works. Please be aware that the first time you run this command it can be rather slow, since python is creating *.pyc files for all httk modules.

Upgrade manual installation

This assumes you have followed the step-by-step installation instructions above. To upgrade, first check what version you presently have with:

ls ~/bin/python/

(look for the highest numbered httk-* directory)

Then find the latest relase download at this link: https://github.com/rartino/httk/releases/latest, and get the link to the
.tar.gz archive.

Then do this:

cd ~/bin/python
rm -f httk-latest.tgz
curl -L <download link> --output httk-<version>.tar.gz
tar -zxf httk-<version>.tgz
rm -f httk-<version>.tar.gz

If the new version is, e.g., v1.1.3):

cp httk-latest/httk.cfg httk-1.1.3/httk.cfg
ln -f -s httk-1.1.3 ../httk-latest

This concludes the upgrade.

Download Source code

The source code of httk is available at github: https://github.com/rartino/httk

An archive of the source code of the latest version can be downloaded here: https://github.com/rartino/httk/releases/latest

Windows

These instructions may be expanded in the future. For now,
what you need to do is download cygwin and when aksed what software
to install, include

wget, python

After cygwin is installed, start a cygwin terminal and follow the
instructions above.

Optional configuration

Edit the httk.cfg file in the httk directory to configure paths to
other software that you want to use from httk. For programs (e.g.,
isotropy) you want the path to point at the executable. For python
libraries, you want the path setting to point at the directory you
would include in PYTHONPATH, i.e., a directory that typically contains
a subdirectory with the name of the package.

Note: if you don’t have certain software, don’t worry, just leave the
line blank. If you have some libraries installed in the system
(e.g. ‘import ase’ works), then you can also leave the lines blank. If
you want to make sure not to use system libraries, set
allow_system_libs=no (this is useful if you are forced to work on a
machine with too old versions installed in the system)

Now, please check out the various resources mentioned in :doc:`index` and look at the Tutorial/ and/or Examples/ programs.

 The httk package

The httk package

This page documents the features of the httk package most relevant for regular users. For a complete listing of members and subpackages, please refer to the full API documentation instead, Full httk API documentation.

Introduction

The high-throughput toolkit (httk)

	A set of tools and utilities meant to help with:

	
	Project management, preparation of large-scale computational project.

	
	Execution of large-scale computational projects

	
	interface with supercomputer cluster queuing systems, etc.

	aid with scripting multi-stage runs

	retrieval of data from supercomputers

	Storage of data in databases

	Search, retrieval and ‘processing’ of data in storage

	Analysis (especially as a helpful interface against 3:rd party software)

Helpful constants

	
httk.httk_root

	str(object=’’) -> string

Return a nice string representation of the object.
If the argument is a string, the return value is the same object.

	
httk.version

	str(object=’’) -> string

Return a nice string representation of the object.
If the argument is a string, the return value is the same object.

Main I/O

	
httk.load(ioa, ext=None)

	A very generic file reader method.

Load a file into a suitable httk object. Try to do the most sane thing possible given the input file.
If you know what to expect from the input file, it may be safer to use a targeted method for that file type.

	
httk.save(obj, ioa, ext=None)

	A very generic file writer method.

Load a file into a suitable httk object. Try to do the most sane thing possible given the input file.
If you know what to expect from the input file, it may be safer to use a targeted method for that file type.

FracVector

	
class httk.FracVector(noms, denom=1)

	FracVector is a general immutable N-dimensional vector (tensor) class for performing linear algebra with fractional numbers.

A FracVector consists of a multidimensional tuple of integer nominators, and a single shared integer denominator.

Since FracVectors are immutable, every operation on a FracVector returns a new FracVector with the result of the operation.
A created FracVector never changes. Hence, they are safe to use as keys in dictionaries, to use in sets, etc.

Note: most methods returns FracVector results that are not simplified (i.e., the FracVector returned does not have
the smallest possible integer denominator). To return a FracVector with the smallest possible denominator, just call
FracVector.simplify() at the last step.

	
class httk.FracScalar(nom, denom)

	Represents the fractional number nom/denom. This is a subclass of FracVector with the purpose of making
it clear when a scalar fracvector is needed/used.

	
class httk.MutableFracVector(noms, denom)

	Same as FracVector, only, this version allow assignment of elements, e.g.,

mfracvec[2,7] = 5

and, e.g.,

mfracvec[:,7] = [1,2,3,4]

Other than this, the FracVector methods exist and do the same, i.e., they return copies of the fracvector, rather
than modifying it.

However, methods have also been added named with set_* prefixes which performs mutating operations, e.g.,

A.set_T()

replaces A with its own transpose, whereas

A.T()

just returns a new MutableFracVector that is the transpose of A, leaving A unmodified.

HttkObject

	
class httk.HttkObject

	

	
httk.httk_typed_property(t)

	

	
httk.httk_typed_init(t, **kargs)

	

	
httk.httk_typed_property_delayed(t)

	

	
httk.httk_typed_init_delayed(t, **kargs)

	

	
httk.HttkPluginWrapper(plugin=None)

	

	
httk.HttkPlugin(main_instance)

	

	
httk.HttkPluginPlaceholder(plugininfo=None)

	

HttkObject for Projects and Computations

	
class httk.Code(name, version)

	Object for keeping track of httk data about a computer software or script

	
class httk.Computation(computation_date, description, code, manifest_hash, signatures, keys, relpath, project_counter, added_date=None)

	Object for keeping track of httk data about a specific computation run

	
class httk.Result(computation)

	Intended as a base class for results tables for computations

	
class httk.ComputationRelated(main_computation, other_computation, relation)

	Object for keeping track of httk data about a specific computation run

	
class httk.ComputationProject(computation, project)

	

	
class httk.Author(last_name, given_names)

	Object for keeping track of tags for other objects

	
class httk.Reference(ref, authors=None, editors=None, journal=None, journal_issue=None, journal_volume=None, page_first=None, page_last=None, title=None, year=None, book_publisher=None, book_publisher_city=None, book_title=None)

	A reference citation

	
class httk.Project(name, description, project_key, keys)

	

	
class httk.ProjectRef(project, reference)

	

	
class httk.ProjectTag(project, tag, value)

	

IOAdapters

	
class httk.IoAdapterFileReader(f, name=None, deletefilename=None, close=False)

	Io adapter for easy handling of io.

	
class httk.IoAdapterFileWriter(f, name=None, close=False)

	Io adapter for access to data as a python file object

	
class httk.IoAdapterFileAppender(f, name=None)

	Io adapter for access to data as a python file object

	
class httk.IoAdapterString(string=None, name=None)

	Universal io adapter, helps handling the passing of filenames, files, and strings to functions that deal with io

	
class httk.IoAdapterStringList(stringlist, name=None)

	Universal io adapter, helps handling the passing of filenames, files, and strings to functions that deal with io

	
class httk.IoAdapterStringList(stringlist, name=None)

	Universal io adapter, helps handling the passing of filenames, files, and strings to functions that deal with io

Full documentation

For full documentation, see Full httk API documentation.

 The httk.atomistic package

The httk.atomistic package

This page documents the features of the httk.atomistic package most relevant for regular users. For a complete listing of members and subpackages, please refer to the full API documentation instead, Full httk API documentation.

Introduction

The httk.atomistic package

Classes and utilities for dealing with high-throughput calculations of atomistic systems.

Atomistic description

	
class httk.atomistic.Structure(assignments, rc_sites=None, rc_cell=None, other_reps=None)

	A Structure represents N sites of, e.g., atoms or ions, in any periodic or non-periodic arrangement.
The structure object is meant to be immutable and assumes that no internal variables are changed after its creation.
All methods that ‘changes’ the object creates and returns a new, updated, structure object.

This is the general heavy weight structure object. For lightweight structure objects, use UnitcellStructure or
RepresentativeStructure.

Naming conventions in httk.atomistic:

	Structure cell type abbreviations:

	
	rc = Representative cell: only representative atoms are given inside the conventional cell.

	they need to be replicated by the symmetry elements.

	uc = Unit cell: any (imprecisely defined) unit cell (usually the unit cell used to define the structure

	if it was not done via a representative cell.) with all atoms inside.

pc = Primitive unit cell: a smallest possible unit cell (the standard one) with all atoms inside.

cc = Conventional unit cell: the high symmetry unit cell (rc) with all atoms inside.

	For cells:

	
	cell = an abstract name for any reasonable representation of a ‘cell’ that defines

	the basis vectors used for representing the structure. When a ‘cell’ is returned,
it is an object of type Cell

basis = a 3x3 sequence-type with (in rows) the three basis vectors (for a periodic system, defining the unit cell, and defines the unit of repetition for the periodic dimensions)

lengths_and_angles = (a,b,c,alpha,beta,gamma): the basis vector lengths and angles

niggli_matrix = ((v1*v1, v2*v2, v3*v3),(2*v2*v3, 2*v1*v3, 2*v2*v3)) where v1, v2, v3 are the vectors forming the basis

metric = ((v1*v1,v1*v2,v1*v3),(v2*v1,v2*v2,v2*v3),(v3*v1,v3*v2,v3*v3))

	For sites:

	
	These following prefixes are used to describe types of site specifications:

	representative cell/rc = only representative atoms are given, which are then to be
repeated by structure symmetry group to give all sites

unit cell/uc = all atoms in unitcell

reduced = coordinates given in cell vectors

cartesian = coordinates given as direct cartesian coordinates

	sites = used as an abstract name for any sensible representation of a list of coordinates and a cell,

	when a ‘sites’ is returned, it is an object of type Sites

counts = number of atoms of each type (one per entry in assignments)

coordgroups = coordinates represented as a 3-level-list of coordinates, e.g.
[[[0,0,0],[0.5,0.5,0.5]],[[0.25,0.25,0.25]]] where level-1 list = groups: one group for each equivalent atom

counts and coords = one list with the number of atoms of each type (one per entry in assignments)
and a 2-level list of coordinates.

	For assignments of atoms, etc. to sites:

	assignments = abstract name for any representation of assignment of atoms.
When returned, will be object of type Assignment.

atomic_numbers = a sequence of integers for the atomic number of each species

occupations = a sequence where the assignments are repeated for each coordinate as needed
(prefixed with uc or rc depending on which coordinates)

	For cell scaling:

	scaling = abstract name for any representation of cell scaling

scale = multiply all basis vectors with this number

volume = rescaling the cell such that it takes this volume

	For periodicity:

	periodicity = abstract name of a representation of periodicity

pbc = ‘periodic boundary conditions’ = sequence of True and False for which basis vectors are periodic / non-periodic

nonperiodic_vecs = integer, number of basis vectors, counted from the first, which are non-periodic

	For spacegroup:

	spacegroup = abstract name for any spacegroup representation. When returned, is of type Spacegroup.

hall_symbol = specifically the hall_symbol string representation of the spacegroup

	
class httk.atomistic.Cell(basis, lattice_system, orientation=1)

	Represents a cell (e.g., a unitcell, but also possibly just the basis vectors of a non-periodic system)

(The ability to represent the cell for a non-periodic system is also the reason this class is not called Lattice.)

	
class httk.atomistic.UnitcellStructure(assignments=None, uc_sites=None, uc_cell=None)

	A UnitcellStructure represents N sites of, e.g., atoms or ions, in any periodic or non-periodic arrangement.
It keeps track of all the copies of the atoms within a unitcell.

The structure object is meant to be immutable and assumes that no internal variables are changed after its creation.
All methods that ‘changes’ the object creates and returns a new, updated, structure object.

Naming conventions in httk.atomistic:

	For cells:

	
	cell = an abstract name for any reasonable representation of a ‘cell’ that defines

	the basis vectors used for representing the structure. When a ‘cell’ is returned,
it is an object of type Cell

basis = a 3x3 sequence-type with (in rows) the three basis vectors (for a periodic system, defining the unit cell, and defines the unit of repetition for the periodic dimensions)

lengths_and_angles = (a,b,c,alpha,beta,gamma): the basis vector lengths and angles

niggli_matrix = ((v1*v1, v2*v2, v3*v3),(2*v2*v3, 2*v1*v3, 2*v2*v3)) where v1, v2, v3 are the vectors forming the basis

metric = ((v1*v1,v1*v2,v1*v3),(v2*v1,v2*v2,v2*v3),(v3*v1,v3*v2,v3*v3))

	For sites:

	
	These following prefixes are used to describe types of site specifications:

	representative cell/rc = only representative atoms are given, which are then to be
repeated by structure symmetry group to give all sites

unit cell/uc = all atoms in unitcell

reduced = coordinates given in cell vectors

cartesian = coordinates given as direct cartesian coordinates

	sites = used as an abstract name for any sensible representation of a list of coordinates and a cell,

	when a ‘sites’ is returned, it is an object of type Sites

counts = number of atoms of each type (one per entry in assignments)

coordgroups = coordinates represented as a 3-level-list of coordinates, e.g.
[[[0,0,0],[0.5,0.5,0.5]],[[0.25,0.25,0.25]]] where level-1 list = groups: one group for each equivalent atom

counts and coords = one list with the number of atoms of each type (one per entry in assignments)
and a 2-level list of coordinates.

	For assignments of atoms, etc. to sites:

	assignments = abstract name for any representation of assignment of atoms.
When returned, will be object of type Assignment.

atomic_numbers = a sequence of integers for the atomic number of each species

occupations = a sequence where the assignments are repeated for each coordinate as needed
(prefixed with uc or rc depending on which coordinates)

	For cell scaling:

	scaling = abstract name for any representation of cell scaling

scale = multiply all basis vectors with this number

volume = rescaling the cell such that it takes this volume

	For periodicity:

	periodicity = abstract name of a representation of periodicity

pbc = ‘periodic boundary conditions’ = sequence of True and False for which basis vectors are periodic / non-periodic

nonperiodic_vecs = integer, number of basis vectors, counted from the first, which are non-periodic

	For spacegroup:

	spacegroup = abstract name for any spacegroup representation. When returned, is of type Spacegroup.

hall_symbol = specifically the hall_symbol string representation of the spacegroup

	
class httk.atomistic.RepresentativeSites(reduced_coordgroups=None, cartesian_coordgroups=None, reduced_coords=None, cartesian_coords=None, counts=None, hall_symbol=None, pbc=None, wyckoff_symbols=None, multiplicities=None)

	Represents any collection of sites in a unitcell

	
class httk.atomistic.UnitcellSites(reduced_coordgroups=None, reduced_coords=None, counts=None, hall_symbol='P 1', pbc=None)

	Represents any collection of sites in a unitcell

	
class httk.atomistic.Assignments(siteassignments, extensions=[])

	Represents a possible vector of assignments

	
class httk.atomistic.Compound(element_wyckoff_sequence, formula, spacegroup_number, extended, extensions, wyckoff_sequence, anonymous_wyckoff_sequence, anonymous_formula, formula_symbols, formula_counts, pbc)

	

	
class httk.atomistic.CompoundStructure(compound, structure)

	

	
class httk.atomistic.StructurePhaseDiagram(structures, energies, hull_indices, competing_indices, hull_competing_indices, hull_distances, coord_system, phase_lines)

	Represents a phase diagram of structures

 Publications

Publications

Publications using, or otherwise relating, to the httk framework

 httk Runmanager Details

httk Runmanager Details

The httk ‘taskmanager toolset’ is centered around the taskmanager.sh
program. This program is responsible for handling a large set of
‘tasks’ you want to execute on a computer cluster. It can distribute
resources between your runs, and re-start them when they break due to,
e.g., a computer node breaks, or your job is stopped due to running
out of allocated time, etc.

The general philosophy is that ‘taskmanager.sh’ handles all the tricky
parts with overseeing your runs, keeping track of which ones are in
which states, and can even restart them automatically when needed. The
taskmanager.sh is, in a way, a “second layer of queue system” for your
runs.

taskmanager.sh is started in a ‘task directory’. It looks in this
directory and descends into subdirectories, looking for anything that
is setup as a task that is waiting to be run, and then runs it. You
can have more than one taskmanager.sh run in the same task directory,
taskmanager.sh is very carefully programmed to avoid inference between
several instances of itself.

The taskmanager.sh runs until there is nothing more to do in the task
directory, at which points it terminates. This is what you typically
want if you submit taskmanager.sh to run on supercomputer cluster
nodes. Alternatively you can start it with ‘taskmanager.sh –daemon”,
in which case it keeps running forever, looking for new tasks to
arrive. You could, e.g., setup a taskmanager daemon running on your
own personal computer.

Anatomy of a task

There are a number of conventions you have to follow when setting up a
task to be run by taskmanager.sh.

A task is stored in its own directory. The directory name has a very specific
format:

ht.task.<computer>.<taskid>.<step>.<restarts>.<owner>.<prio>.<status>

	where:

	<computer> this is the computer that the task has been assigned to, or ‘unassigned’.
<prio> is a priority number 1-5. Use ‘3’ as default.
<taskid> is a “name” for the task
<step> is the present ‘step’ that a multi-step task is on
<restarts> is a counter that keeps track on how many times the task has been restarted, when created should be 0
<owner> ‘unclaimed’ when created, which is changed into a code belonging to a running taskmanager that presently is handling the task.
<status> is one of:

	waitstart: the task is waiting to be started for the first time

	running: the task is currently being executed

	waitstep: the task is partially completed and waits for the next step

	waitsubtasks: the task has split into a number of subtasks and is waiting for them to complete

	finished: the task has successfully run to completion

	broken: the task has returned an error code that specifies that it wants to be set aside as ‘broken’.

	stopped: the taskmanager have stopped the job for some reason (timeout, too many restarts, etc.)

The primary component of a task is a “runscript” or a “runprogram” (you can use any language to write these) that
is responsible for executing your computational task. The task directory should contain this runscript. It can have either one
of two names:

	ht_run: A ‘simplified’ run script that is meant for simple jobs. “Just run this”.
If the run breaks (e.g. is stopped by the computer cluster), it will simply
be restarted the next time (you are responsible for necessary cleanup).

	ht_steps: Step-scripts allows for more functionality, most importantly, a run can
be executed in a series of steps, and re-start is done from the last
completed step rather than as a complete do-over.

The ht.parameters file

[IMPORTANT: This section describes functionality not yet
fully implemented. Presently ht.taskmanger starts all tasks. To handle
resources, you presently need to setup e.g. a single cluster as
different ‘computers’]

The run directory may contain a file ht.parameters that, in that case,
is consulted by taskmanager.sh before executing the run. The file should
be formatted as rows of ‘parameter=value’.

	Relevant parameters are:

	‘cores=X’ : The task needs to run at at least X cores.

‘nodes=X’ : The task needs to run at at least X computer nodes.

‘memory=X’: The task needs at least X amount of memory.

‘restart=false’: Never restart the run, always re-init it from scratch if possible (if not, set it in a ‘broken’ state).

If the requirements cannot be fulfilled (at a given time) the process
is skipped and taskmanager.sh looks for another process (possibly of
lower priority)

Note: taskmanager.sh does not at this time implement a fancy resource
management algorithm, but rather just uses a ‘greedy’ algorithm where
it tries to start jobs in priority order. A high-priority job
with harsh resource requirements (e.g., many nodes) may thus be
starved by a massive amount of small low priority jobs. If this is a
problem, you will have to setup a separate ‘computer’ for jobs that
would otherwise starve.

Simplified ‘ht_run’ runscript

When your ‘ht_run’ is executed, your current working directory is your
task directory. The script gets called with one command line
parameter, the name of the <step> in the task directory name. The
runscript should simply execute your run.

IMPORTANT: In case your run gets stopped (e.g., by the computer
cluster because your job runs out of time, or the computer node it is
running on crashes), it needs to handle being re-started with no ill
effects, i.e., ‘ht_run’ will get executed again in an ‘unclean’
directory. If this is not possible, set ‘restart=false’ in the
ht.parameters file. But note, the latter means your run will end up in
a ‘broken’ state if it needs to be restarted. This is a bad idea for
real high-throughput jobs. In this situation, you are strongly
recommended to use a ht_steps script instead. (see below)

See APPENDIX A.1 below for an outline of how taskmanager.sh actually process
a ht_run-type task. This may be very helpful to understand what
actually happens.

The more advanced ‘ht_steps’ runscript

When your ‘ht_steps’ is executed, your current working directory is an
empty subdirectory of your task directory named ‘ht.run.<date>’. You
should access files in your task directory simply by ‘../filename’,
etc. Your ‘ht_steps’ script is supposed to setup the run in this
directory by copying or use symbolic linking (‘ln -s’) of the
appropriate files from your run directory. You should then execute
your run, and end your run script in a normal way.

You are ‘forced’ into using a subdirectory this way rather than simply
executing your run in the run directory itself. The motivation for
this is to unify task handling for restarts, etc.

When a ‘ht_steps’ runscript is executed it gets a single parameter set
to the <step> part of the task directory name. When it finishes, it
should first write a file ‘ht.status’ in the task directory that
contains a simple string naming its next ‘step’, and then it should
return with a specific exit code:

	exit code 2: Waiting for next task

	exit code 3: Subtasks have been created, do not restart again until all are completed.

	exit code 4: Restart me completely

	exit code 5: the run is in a broken state, mark it broken and leave it.

Usually you don’t need to think about this, just use the provided httk
task api routines for the language being used, and exit the task with,
e.g. ‘TASK_NEXT’ (in bash) or similar. See the corresponding httk task
api instructions for more details.

IMPORTANT: a ht_steps script must be capable of being restarted at
the same step. I.e., if it is started on a ‘relax’ step, the job may
be stopped (running out of runtime) at any time. It may then be
restarted again on the same ‘relax’ step in which case it needs to be
able to ‘re-init’ the job and restart (or just continue it, if
applicable). The script needs to be written such that it can handle
this transparently. For example, some electronic structure software
overwrites input files (e.g., VASP overwrites the CHGCAR which
sometimes is used as an input file for a run). In this case, one
needs to write ht_steps to keep around a copy CHGCAR.before so that
it can be used to re-initalize the file as the job is
restarted. Alternatively, a task may return ‘4’ to indicate that it is
in such a broken state that it has to be completely restarted. You are
recommended to read the code of some tasks provided along with httk to
learn how tasks should be written.

See APPENDIX A.2 for an outline of how taskmanager.sh actually process
a ht_steps-type task. This may be very helpful to understand what
actually happens.

‘ht_steps’ subtasks

In a ht_steps script one can create ‘subtasks’. This is done is
simply by the runscript generating subdirectories with appropriate
naming (see section 6.2 Anatomy of a task above.) Note that as soon as
the directories fulfill this naming scheme, the run may be executed by
another taskmanager.sh process, so one must follow the following
process:

	Create a directory called ht.tmp.task.(something)

	Populate the directory with necessary files to run as a subtask.
(Primarily, a ht_run, or ht_steps)

	Only when the subtask is ready,
mv ht.tmp.task.<something> ht.task.<something>

Using specifically the ‘ht.tmp.’ prefix for your temporary directories
has the advantage that such directories are automatically removed when
runs are restarted, which avoids leaving half-complete subtask
directories in case your job is stopped while creating subtasks.

When a ht_steps script exits with exit code 3, it will be put on hold
until all subtasks that reside inside its subdirectories have run to
completion. Once this has happened, it will be restarted as usual with
‘ht_steps <step>’.

Note that subtasks are handled exactly like regular tasks, so they can
themselves create substasks, and so on.

A couple of neat tricks:

	Use a symbolic link (‘ln -s’) to make your subtasks use the same
ht_steps script as the topmost task. This way all the run
functionality can conveniently be kept inside one and the same
script/program.

	Even if your main job uses a ‘ht_steps’ runscript, your subtasks
can use ‘ht_run’ scripts to decrease the overhead. (You can even
make a symbolic link from the subruns ‘ht_runs’ to your main
‘ht_steps’.)

single_job_taskmanager.sh

There is a ‘light’ version of the taskmanager named
single_job_taskmanager.sh that may be helpful in a few situations,
e.g.,

	You are in the process of developing a run script and “just want
to run through this task” to debug it, with all output in the
console.

	You don’t care for the parallelism, resource handling, and
restart/continuation capability of the full httk taskmanager, and
just want something to put in your cluster submit script that will
simply run one task to completion with a minimum of hassle.

You start single_job_taskmanager.sh with the task directory as the
current working directory, and it will run that one task to
completion. It never ‘restarts’ a task. It thus always create a new
‘run.<date and timestamp>’ and run the task in this directory. It will
not rename the task directory itself, and there is no need to follow
the naming convention of the task directory at all. It ignores all
‘ht.parameters’ files. Other than this, it mimics the exact
functionality of the full task manager both for ‘ht_run’ and
‘ht_steps’ type runscripts.

taskmanager.sh prioritization

The priority order of waiting tasks is the following:

	First it handles tasks of priority 1, then 2, … , and last 5.

	It first prioritize finishing tasks that have been started before
starting new ones.

	It always runs subtasks ‘depth first’.

Provided helper scripts

In the httk directory, under Execution/tasks-templates/* you can find
a number of provided scripts that can be used as-is for your own runs.
Reading and understanding them may help you develop / adapt them to
your own needs.

Writing runscripts in python

The present aid in the python library for run scripts is limited to
use of ready-made templates under Execution/tasks-templates/
Please consult the tutorial Step6.

It is the idea that the httk library will be extended with helper
functionality for writing your own runscripts in python. One of the
leading design ideas is to make it possible to write scripts that
describes how to do a calculation in a code-independent-way. I.e.,
relying on higher-order routines of type ‘converge’ and ‘relax’ which
then call out to a specific code.

Writing runsscripts in bash

httk presently come with a helper library of routines for writing
runscripts in bash.

	There is a general tasks API for bash in:

	Execution/tasks/ht_tasks_api.sh

	and specifically a set of helper routines for runs with the electronic structure software VASP in:

	Execution/tasks/vasp/vasptools.sh

APPENDIX A: taskmanager.sh process outlines

The taskmanager.sh process with a ht_run runscript

Here is an outline of the process as taskmanager.sh executes a ht_run script:

	taskmanager.sh looks in the task directory and finds a
*.waitstart directory

	taskmanager.sh ‘adopts’ this task by renaming the directory so
that it includes a taskmanager-id (an id that pertains to this
runmanager.sh instance) This ‘locks’ the run from being tampered
with by other runmanagers.

	taskmanager.sh executes the ht_run script in this directory.

	the ht_run script does what it needs to do and simply finishes as
usual.

	taskmanager.sh renames the task directory to both remove the
taskmanager-id and so that it now ends with a ‘.finished’ suffix.

IF the taskmanager and the job is stopped at any of the points 3-5
(e.g., the cluster runtime ends and stops the processes), you can
simply submit another job with a new taskmanager.sh. This is an
outline of what happens then:

	taskmanager.sh notices a directory named ‘ht.task.*.running’ that
has a filesystem ‘ctime’ that is > 10 minutes old. This marks an
abandonded run, because an alive taskmanager.sh makes sure to
update ctime periodically on any ongoing runs.

	taskmanager.sh ‘adopts’ this task by renaming the directory so
that it removes the old taskmanager-id and replaces it with that
of the present instance.

	taskmanager.sh simply restarts the ht_run scripts in this
directory (expecting it to know what to do with regards to
cleanup etc.)

	Everything continues from point #4 and onwards in the regular
outline above.

The taskmanager.sh process with a ht_steps runscript

The process outlined in 6.3 changes when a tasks_steps script is
used. Steps 1-2 are the same, after that, this happens:

	taskmanager.sh creates a subdirectory in the task directory named
similar to ‘ht.run.2014-05-05_12_15_36’ (i.e.,
ht.run.<date and time-stamp>) and makes this directory the current
working directory.

	taskmanager.sh executes ‘ht_steps <step>’ where step is the name
of the .<step>. part of the task directory name.

	ht_steps executes the apropriate part of the run, writes the
ht.status file, and exits with an apropriate exit status.

	The directory is renamed to remove the taskmanager-id and,
depending on the exit status, is made to end with any one of
‘.finished’, ‘waitstep’ or , ‘waitsubtasks’. If ‘.finished’,
then this job is complete and will be left alone. Otherwise,
continue below.

	taskmananger.sh goes back to scanning the task directory for
runs, but will eventually find this job again.

[If it ends in .waitsubtasks]

	8a. subtasks are handled by taskmanager.sh just like any normal

	tasks. The .waitsubtasks ht_step script itself is not touched
until all subtasks in its subdirectories are in a finished
state. When this happens, it is restarted following point #4 and
onwards.

[If it ends in .waitstep]

8b. taskmananger.sh restart the run following point #4 and onwards.

IF the taskmanager and the job is stopped at any of the points 3-6
(e.g., the cluster runtime ends and stops the processes), you can
simply submit another job with a new taskmanager.sh. This is an
outline of what happens then:

	taskmanager.sh notices a directory named ‘ht.task.*.running’ that
has a filesystem ‘ctime’ that is > 10 minutes old. This marks an
abandonded run, because an alive taskmanager.sh makes sure to
update ctime periodically on any ongoing runs.

	taskmanager.sh ‘adopts’ this task by renaming the directory so
that it removes the old taskmanager-id and replaces it with that of
the present instance.

	taskmanager.sh now just continues from point #4 and onwards in the regular outline.

The exception to #3 is if the ht.parameters file (see below) contains
‘restart=false’. In that case, the old ‘run.*’ directory will be
removed, and taskmanager.sh instead restarts from #3 in the regular
outline.

 httk Users’ Guide

httk Users’ Guide

Introduction

The High-Throughput Toolkit (httk) is a toolkit for preparing and
running calculations, analyzing the results, and store them in a
global and/or in a personalized database. The word ‘high-throughput’
refers to the practice of executing a vast number of computational
tasks on a supercomputer cluster, in which case proper automatization
of all steps is critically important. Httk is presently targeted at atomistic calculations in materials science and electronic structure, but aims to be extended into a library useful also outside those areas.

This file is the users' guide. It covers different aspects of the
functionality provided by httk. For help on other topics, see
the front page.

For an even quicker introduction, look through the overview presentation
on that page.

Importing the httk python library into your program

The easiest way to import the python library if you do atomistic
calculations is:

from httk import *
from httk.atomistic import *

This imports some very often used identifiers into the namespace of
your program, e.g., Structure for atomic structures. If you want to
avoid wild imports (from X import *) you can of course instead do:

import httk
import httk.atomistic

(Note the need to separately import the atomistic sub-library; it is
not imported automatically by import.httk)

To avoid dependences on libraries that you may not have installed,
httk implements somewhat unusual ‘plugin’-type extensions to its core
classes. For example, you can enable visualization of atomic
structures, which requires jmol to be installed, by the following:

from httk import *
from httk.atomistic import *
import httk.atomistic.vis

This adds new visualization calls to the Structure class which can be
called, e.g., as:

mystructure.vis.show()

(Note: if you forget to do ‘import httk.atomistic.vis’, httk informs
you about the need to add this import.)

Example programs

It may be easiest to learn the use of httk by example. There are three
such resources available. The presentation httk_overview.pdf shows
working code snippets that can be copy+pasted. There are short
examples under Examples. Then there is a step-by-step tutorial under
Tutorial/ that is intended to showcase the httk features in a natural
progressing order.

Interfacing with other software

Interfacing with python libraries

A common need is to use functionality provided by other python
libraries outside the standard libraries. Httk tries to help with
this. It provides ‘glue’ modules that lets you import exactly the
version you want.

To use the ase python library (Atomic Simulation Environment)
together with httk, you typically want to do:

import httk.external.ase_glue
import ase

The first line imports the httk ‘glue’ module. It includes helper
functionality that makes httk and ase work together. But, it also
sets up your python environment so that at the next line ‘import ase’
actually imports the version of ase that you have configured httk to
use. This can, for example, be a specific version in your home
directory (which can help avoid an older version provided system-wide
on the computational cluster you are using). All you need to do is
edit httk.cfg in the main httk directory and set the path to where you
have placed the ase library (e.g., in your home directory).

Interact with other programs

Similar to the interface to other python libraries, httk helps you
call other (non-python) software packages.

For example, the following code:

import httk.external.jmol

gives you access to routines for running and interacting with jmol.

Note that subpackages of httk.external raise an exception if you try
to import them and the relevant software is missing.

Interface packages

httk also provides ‘light’ versions of its interface to other software
under httk.iface.*. These packages DO NOT require the corresponding
software to be installed. This usually includes things such as writing
correctly formatted files, etc.

More details on the httk python library

This section covers some design decisions of httk that it may be
useful to take note of.

Creating new httk objects

The python default constructor (the ‘__init__’ constructor) that is
called when simply doing:

struct = Structure(arg1, arg2, ...)

should almost never be used with httk objects, for several
reasons. Perhaps the most important is that it is going to change
between version of httk (for more explanation, see the developers’
guide).

Instead, almost all httk objects provide a classmethod named
*.create for this purpose instead. I.e.,

struct = Structure.create(arg1, arg2, ...)

A note about object mutation

Most httk objects assume they stay unaltered after creation (unless
clearly spelled out, e.g., ‘MutableFracVector’). Hence, methods
‘altering’ an object normally return a new copy of the object with
the alterations made. This comes with a number of benefits:

	They can be used as keys in dictionaries

	Less risk for bugs as one part of code alters an object that
happens to also be stored and used somewhere else.

	The API becomes more clear, you do not have to wonder if the object
itself may be altered by calling a method (it never is.)

It also comes with a drawback

	Code making, say, a series of alterations of an object may becomes more bulky to write.

It is the intention to provide mutable versions where this drawback is
of significance. Right now, this more or less only applies to the
existence of a MutableFracVector vs the regular FracVector.

Object conversion with the ‘use’ method

Almost all httk classes contains a *.use() method for helping with
object type conversion. Lets say that you get a Structure object
‘structure’ which represents structure data fetched out of the
database, but you want to have a UnitcellStructure instead, simply do
this:

unitcellstruct = UnitcellStructure.use(structure)

I/O in httk

All I/O in the httk library uses our own framework of IOAdapters
classes. This is usually not something you need to worry about; any
routine that takes as a parameter an “IOAdapter” ‘ioa’ will accept a
filename or any form of python streaming object in its place. (You
may want to check the IOAdapter chapter of the developers’ guide to
see how this is done in practice, as the IOAdapters may be helpful
also in your own routines.)

The httk taskmanager toolset

Apart from the python library, httk also comprises a toolset for
executing computational tasks on computer clusters. To avoid issues
with incompatible version, this part of httk is mostly written in bash
rather than python. If things are working as they should, this is not
something you should need to worry about, you can still script your
runs in python, or any other language you prefer.

Setting up a computational ‘project’

You should first setup a ‘top’ working directory for your project. Use
‘cd’ to go to this directory and then run:

httk-project-setup project_name

Configuring ‘computers’

Supercomputer clusters, as well as other computers that you are going
to execute runs on can now be setup by the command httk-computer-setup
this allows you to configure settings for how to transport runs to
this computer and run them there.

After you have configured the computer you also need to run:

httk-computer-install

to copy necessary httk files to this computer and “prepare it” for
executing runs.

Sending tasks to a computer and running them

For this to work you need to have created batch tasks on the right
format. For this, please consider closely Step6 of the httk tutorial.

Once you have a directory with runs, execute:

httk-tasks-send-to-computer <computer name>

and the runs will be copied over. They will not yet be started.

All execution of tasks is done via the taskmanager.sh process, which
now needs to be started on the computer. Run:

httk-tasks-start-taskmanager <computer name>

and it will start up.

You can monitor the status of your compute runs by:

httk-tasks-status <computer name>

And as soon as one or more of the runs have finished, you can fetch
them back with:

httk-tasks-receive-from-computer <computer name>

This concludes what you need for ‘simple’ use of the task
system. However, for advanced use, you will need to better understand
precisely how the taskmanager.sh process operates. This information is
present in a separate text: RUNMANAGER_DETAILS.txt.

If you want; how to submit your results to a public database

httk includes tools that, if you want to, makes it easy to submit a
project directory so that your data can be made available and
searchable in a public database. The normal case would be the
Open Materials Database (http://openmaterialsdb.se), run by the
same people involved with the httk framework.

First, if you have not yet setup a project directory, do so. I.e.,
collect all the files that you wish to be part of the submission and do:

httk-project-setup project_name

This creates a subdirectory ht_project in this directory. You must now use a text editor and edit three files in this directory:

	Edit ht_project/config and set description=A good description of your poject.

	Edit ht_project/license and write clearly what license you place the data under. For submissions to the Open Materials Database we normally ask for the data to be placed either under a creative commons attribution license, or the public domain. (This can be negotiated, contact the omdb team at contact [at] openmaterialsdb.se.) See http://openmaterialsdb.se/contributorinfo.html for the latest info.

	Optional: edit ht_project/references and insert, one per line, any citations to papers, etc., that you want to associate with this project.

Once your project is setup correctly, you simply have to have the project
directory as your current working directory and execute:

httk-project-submit

(or httk-project-submit <website> if you want to submit somewhere
else than the Open Materials Database.)

After a series of question and a cryptographic signing of your
project files, your files will be submitted to the database.

Note that submitted results are not directly and automatically
processed. There is a certain level of manual
examination by us to make sure the upload makes sense before we
add it to the database.

Furthermore, you can edit the file ht.project/references to add or remove publications even after your result has been submitted. To re-submit updated references, issue the command:

httk-project-submit-update-references

Finally, should you change your mind about the data being published, you can issue the command:

httk-project-submit-withdraw

Which will lead to the result eventually being pulled from our data (however, also here some manual work is involved, so the result will not be intimidate.)

 httk Contributors

httk Contributors

	Programming:

	
	Rickard Armiento, Linköping University, Sweden (ricard [at] ifm.liu.se)

	Christopher Tholander, Linköping University, Sweden.

Some parts of httk related to reading structues are heavily inspired by corresponding code in cif2cell by Torbjörn Björkman (Aalto University, Finland).

	Database and API design:

	
	Rickard Armiento

	Peter Steneteg

	Igor Mogyasinz

Acknowledgements

	httk has kindly been funded in part by:

	
	The Swedish Research Council (VR) Grant No. 621-2011-4249.

	The Linnaeus Environment at Linkoping on Nanoscale Functional Materials (LiLi-NFM) funded by The Swedish Research Council.

 Python Module Index

 Python Module Index

 h

 		 	

 		
 h	

 	[image: -]
 	
 httk	

 	
 	
 httk.analysis	

 	
 	
 httk.analysis.matsci	

 	
 	
 httk.analysis.matsci.phasediagram	

 	
 	
 httk.analysis.matsci.vis	

 	
 	
 httk.analysis.matsci.vis.phasediagramvisualizerplugin	

 	
 	
 httk.atomistic	

 	
 	
 httk.atomistic.assignment	

 	
 	
 httk.atomistic.assignments	

 	
 	
 httk.atomistic.atomisticio	

 	
 	
 httk.atomistic.atomisticio.structure_cif_io	

 	
 	
 httk.atomistic.atomisticio.structure_io	

 	
 	
 httk.atomistic.atomisticio.structureioplugin	

 	
 	
 httk.atomistic.cell	

 	
 	
 httk.atomistic.cellshape	

 	
 	
 httk.atomistic.cellutils	

 	
 	
 httk.atomistic.cli	

 	
 	
 httk.atomistic.compound	

 	
 	
 httk.atomistic.data	

 	
 	
 httk.atomistic.data.periodictable	

 	
 	
 httk.atomistic.data.spacegroups	

 	
 	
 httk.atomistic.formulautils	

 	
 	
 httk.atomistic.representativesites	

 	
 	
 httk.atomistic.representativestructure	

 	
 	
 httk.atomistic.results	

 	
 	
 httk.atomistic.results.relaxedcellresult	

 	
 	
 httk.atomistic.results.totalenergyresult	

 	
 	
 httk.atomistic.siteassignment	

 	
 	
 httk.atomistic.sites	

 	
 	
 httk.atomistic.sitesutils	

 	
 	
 httk.atomistic.spacegroup	

 	
 	
 httk.atomistic.spacegrouputils	

 	
 	
 httk.atomistic.structure	

 	
 	
 httk.atomistic.structurephasediagram	

 	
 	
 httk.atomistic.structureutils	

 	
 	
 httk.atomistic.supercellutils	

 	
 	
 httk.atomistic.unitcellsites	

 	
 	
 httk.atomistic.unitcellstructure	

 	
 	
 httk.atomistic.vis	

 	
 	
 httk.atomistic.vis.asestructurevisualizer	

 	
 	
 httk.atomistic.vis.jmolstructurevisualizer	

 	
 	
 httk.atomistic.vis.structurephasediagramvisualizerplugin	

 	
 	
 httk.atomistic.vis.structurevisualizerplugin	

 	
 	
 httk.cli	

 	
 	
 httk.config	

 	
 	
 httk.config.config	

 	
 	
 httk.core	

 	
 	
 httk.core.basic	

 	
 	
 httk.core.citation	

 	
 	
 httk.core.code	

 	
 	
 httk.core.computation	

 	
 	
 httk.core.console	

 	
 	
 httk.core.crypto	

 	
 	
 httk.core.ed25519	

 	
 	
 httk.core.geometry	

 	
 	
 httk.core.httkobject	

 	
 	
 httk.core.ioadapters	

 	
 	
 httk.core.miniparser	

 	
 	
 httk.core.project	

 	
 	
 httk.core.reference	

 	
 	
 httk.core.signature	

 	
 	
 httk.core.template	

 	
 	
 httk.core.vectors	

 	
 	
 httk.core.vectors.fracmath	

 	
 	
 httk.core.vectors.fracvector	

 	
 	
 httk.core.vectors.mutablefracvector	

 	
 	
 httk.core.vectors.vector	

 	
 	
 httk.core.vectors.vectormath	

 	
 	
 httk.db	

 	
 	
 httk.db.backend	

 	
 	
 httk.db.backend.sqlite	

 	
 	
 httk.db.filteredcollection	

 	
 	
 httk.db.httkobjdbplugin	

 	
 	
 httk.db.storable	

 	
 	
 httk.db.store	

 	
 	
 httk.db.store.dictstore	

 	
 	
 httk.db.store.sqlstore	

 	
 	
 httk.db.store.trivialstore	

 	
 	
 httk.external	

 	
 	
 httk.external.aflow_ext	

 	
 	
 httk.external.ase_glue	

 	
 	
 httk.external.cif2cell_ext	

 	
 	
 httk.external.command	

 	
 	
 httk.external.gulp_ext	

 	
 	
 httk.external.isotropy_ext	

 	
 	
 httk.external.jmol	

 	
 	
 httk.external.platon_ext	

 	
 	
 httk.external.pymatgen_glue	

 	
 	
 httk.external.pyspglib_ext	

 	
 	
 httk.external.subimport	

 	
 	
 httk.graphics	

 	
 	
 httk.graphics.matplotlib	

 	
 	
 httk.httkio	

 	
 	
 httk.httkio.cif	

 	
 	
 httk.httkio.load	

 	
 	
 httk.httkio.save	

 	
 	
 httk.httkweb	

 	
 	
 httk.httkweb.app_curses	

 	
 	
 httk.httkweb.app_qt5	

 	
 	
 httk.httkweb.functionhandler_httk	

 	
 	
 httk.httkweb.helpers	

 	
 	
 httk.httkweb.jsonapi	

 	
 	
 httk.httkweb.publish	

 	
 	
 httk.httkweb.render_httk	

 	
 	
 httk.httkweb.render_rst	

 	
 	
 httk.httkweb.serve	

 	
 	
 httk.httkweb.templateengine_httk	

 	
 	
 httk.httkweb.templateengine_templator	

 	
 	
 httk.httkweb.webgenerator	

 	
 	
 httk.httkweb.webserver	

 	
 	
 httk.httkweb.wsgi	

 	
 	
 httk.iface	

 	
 	
 httk.iface.ase_if	

 	
 	
 httk.iface.cif2cell_if	

 	
 	
 httk.iface.gulp_if	

 	
 	
 httk.iface.isotropy_if	

 	
 	
 httk.iface.jmol_if	

 	
 	
 httk.iface.openbabel_if_notstable	

 	
 	
 httk.iface.platon_if	

 	
 	
 httk.iface.spglib_if	

 	
 	
 httk.iface.vasp_if	

 	
 	
 httk.optimade	

 	
 	
 httk.optimade.entry_endpoint	

 	
 	
 httk.optimade.error	

 	
 	
 httk.optimade.httk_entries	

 	
 	
 httk.optimade.httk_execute_query	

 	
 	
 httk.optimade.info_endpoint	

 	
 	
 httk.optimade.meta	

 	
 	
 httk.optimade.optimade_entries	

 	
 	
 httk.optimade.optimade_filter_to_httk	

 	
 	
 httk.optimade.parse_optimade_filter	

 	
 	
 httk.optimade.process	

 	
 	
 httk.optimade.serve	

 	
 	
 httk.optimade.validate	

 	
 	
 httk.optimade.validation	

 	
 	
 httk.optimade.validation.all	

 	
 	
 httk.optimade.validation.base_info	

 	
 	
 httk.optimade.validation.entry	

 	
 	
 httk.optimade.validation.exception	

 	
 	
 httk.optimade.validation.headers	

 	
 	
 httk.optimade.validation.request	

 	
 	
 httk.optimade.validation.response	

 	
 	
 httk.optimade.versions	

 	
 	
 httk.task	

 	
 	
 httk.task.reader	

 	
 	
 httk.task.taskmgr	

 	
 	
 httk.versioning	

 Index

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | X
 | Z

A

 	
 	abstract_formula() (in module httk.atomistic.structureutils)

 	abstract_symbol() (in module httk.atomistic.sitesutils)

 	(in module httk.atomistic.structureutils)

 	acos() (httk.core.vectors.fracvector.FracVector method)

 	(httk.FracVector method)

 	(in module httk.core.vectors.vectormath)

 	acosh() (in module httk.core.vectors.vectormath)

 	add() (httk.db.filteredcollection.FCMultiDict method)

 	(httk.db.filteredcollection.FilteredCollection method)

 	add_all() (httk.db.filteredcollection.FilteredCollection method)

 	add_ext_citation() (in module httk.core.citation)

 	add_name() (httk.atomistic.Compound method)

 	(httk.atomistic.compound.Compound method)

 	add_names() (httk.atomistic.Compound method)

 	(httk.atomistic.compound.Compound method)

 	add_offset() (httk.db.filteredcollection.FilteredCollection method)

 	add_phase() (httk.analysis.matsci.phasediagram.PhaseDiagram method)

 	add_project() (httk.Computation method)

 	(httk.core.computation.Computation method)

 	add_projects() (httk.Computation method)

 	(httk.core.computation.Computation method)

 	add_ref() (httk.atomistic.Compound method)

 	(httk.Code method)

 	(httk.Computation method)

 	(httk.Project method)

 	(httk.atomistic.Structure method)

 	(httk.atomistic.compound.Compound method)

 	(httk.atomistic.structure.Structure method)

 	(httk.core.code.Code method)

 	(httk.core.computation.Computation method)

 	(httk.core.project.Project method)

 	add_refs() (httk.atomistic.Compound method)

 	(httk.Code method)

 	(httk.Computation method)

 	(httk.Project method)

 	(httk.atomistic.Structure method)

 	(httk.atomistic.compound.Compound method)

 	(httk.atomistic.structure.Structure method)

 	(httk.core.code.Code method)

 	(httk.core.computation.Computation method)

 	(httk.core.project.Project method)

 	add_sort() (httk.db.filteredcollection.FilteredCollection method)

 	add_src_citation() (in module httk.core.citation)

 	add_tag() (httk.atomistic.Compound method)

 	(httk.Code method)

 	(httk.Computation method)

 	(httk.Project method)

 	(httk.atomistic.Structure method)

 	(httk.atomistic.compound.Compound method)

 	(httk.atomistic.structure.Structure method)

 	(httk.core.code.Code method)

 	(httk.core.computation.Computation method)

 	(httk.core.project.Project method)

 	add_tags() (httk.atomistic.Compound method)

 	(httk.Code method)

 	(httk.Computation method)

 	(httk.Project method)

 	(httk.atomistic.Structure method)

 	(httk.atomistic.compound.Compound method)

 	(httk.atomistic.structure.Structure method)

 	(httk.core.code.Code method)

 	(httk.core.computation.Computation method)

 	(httk.core.project.Project method)

 	
 	added_date (httk.Computation attribute)

 	(httk.core.computation.Computation attribute)

 	addsym() (in module httk.external.platon_ext)

 	addsym_spacegroup() (in module httk.external.platon_ext)

 	adornment_chars (httk.httkweb.render_httk.RenderHttk attribute)

 	aflow() (in module httk.external.aflow_ext)

 	alter() (httk.db.backend.sqlite.Sqlite method)

 	analysis() (in module httk.external.pyspglib_ext)

 	angles_to_cosangles() (in module httk.atomistic.cellutils)

 	anonymous_formula (httk.atomistic.Compound attribute)

 	(httk.atomistic.Structure attribute)

 	(httk.atomistic.compound.Compound attribute)

 	(httk.atomistic.sites.Sites attribute)

 	(httk.atomistic.structure.Structure attribute)

 	anonymous_formula() (in module httk.atomistic.sitesutils)

 	anonymous_symbol_to_int() (in module httk.core.basic)

 	anonymous_wyckoff_sequence (httk.atomistic.Compound attribute)

 	(httk.atomistic.RepresentativeSites attribute)

 	(httk.atomistic.Structure attribute)

 	(httk.atomistic.compound.Compound attribute)

 	(httk.atomistic.representativesites.RepresentativeSites attribute)

 	(httk.atomistic.structure.Structure attribute)

 	any_to_fraction() (in module httk.core.vectors.fracmath)

 	apply() (httk.httkweb.templateengine_httk.TemplateEngineHttk method)

 	(httk.httkweb.templateengine_templator.TemplateEngineTemplator method)

 	apply_template() (in module httk.core.template)

 	apply_templates() (in module httk.core.template)

 	argmax() (httk.core.vectors.fracvector.FracVector method)

 	(httk.FracVector method)

 	argmin() (httk.core.vectors.fracvector.FracVector method)

 	(httk.FracVector method)

 	ase_atoms_to_structure() (in module httk.external.ase_glue)

 	ase_read_structure() (in module httk.external.ase_glue)

 	ase_write_struct() (in module httk.external.ase_glue)

 	AseStructureVisualizer (class in httk.atomistic.vis.asestructurevisualizer)

 	asin() (httk.core.vectors.fracvector.FracVector method)

 	(httk.FracVector method)

 	(in module httk.core.vectors.vectormath)

 	asinh() (in module httk.core.vectors.vectormath)

 	Assignment (class in httk.atomistic.assignment)

 	Assignments (class in httk.atomistic)

 	(class in httk.atomistic.assignments)

 	atan() (in module httk.core.vectors.vectormath)

 	atan2() (in module httk.core.vectors.vectormath)

 	atanh() (in module httk.core.vectors.vectormath)

 	atomic_number (httk.atomistic.siteassignment.SiteAssignment attribute)

 	atomic_number() (in module httk.atomistic.data.periodictable)

 	atomic_number_isotope() (in module httk.atomistic.data.periodictable)

 	atomic_numbers (httk.atomistic.Assignments attribute)

 	(httk.atomistic.assignments.Assignments attribute)

 	(httk.atomistic.siteassignment.SiteAssignment attribute)

 	atomic_symbol() (in module httk.atomistic.data.periodictable)

 	Author (class in httk)

 	(class in httk.core.reference)

B

 	
 	basics (httk.db.store.dictstore.DictStore attribute)

 	(httk.db.store.sqlstore.SqlStore attribute)

 	basis (httk.atomistic.cellshape.CellShape attribute)

 	basis_determinant() (in module httk.atomistic.cellutils)

 	(in module httk.atomistic.structureutils)

 	basis_scale_to_vol() (in module httk.atomistic.structureutils)

 	basis_to_niggli() (in module httk.atomistic.structureutils)

 	basis_to_niggli_and_orientation() (in module httk.atomistic.cellutils)

 	basis_vol_to_scale() (in module httk.atomistic.structureutils)

 	best_rational_in_interval() (in module httk.core.vectors.fracmath)

 	
 	BinaryBooleanOp (class in httk.db.filteredcollection)

 	BinaryComparison (class in httk.db.filteredcollection)

 	BinaryOp (class in httk.db.filteredcollection)

 	bit() (in module httk.core.ed25519)

 	bonds() (httk.atomistic.vis.jmolstructurevisualizer.JmolStructureVisualizer method)

 	breath_first_idxs() (in module httk.core.basic)

 	build_cubic_supercell() (in module httk.atomistic.supercellutils)

 	build_ls() (in module httk.core.miniparser)

 	build_orthogonal_supercell() (in module httk.atomistic.supercellutils)

 	build_supercell_old() (in module httk.atomistic.supercellutils)

 	bullet_item_markers (httk.httkweb.render_httk.RenderHttk attribute)

C

 	
 	calculate_kpoints() (in module httk.iface.vasp_if)

 	cartesian_to_reduced() (in module httk.atomistic.structureutils)

 	cc (httk.atomistic.Structure attribute)

 	(httk.atomistic.structure.Structure attribute)

 	cc_formula_parts (httk.atomistic.Structure attribute)

 	(httk.atomistic.structure.Structure attribute)

 	ceil() (httk.core.vectors.fracvector.FracVector method)

 	(httk.FracVector method)

 	(in module httk.core.vectors.vectormath)

 	Cell (class in httk.atomistic)

 	(class in httk.atomistic.cell)

 	cell_to_basis() (in module httk.atomistic.cellutils)

 	CellShape (class in httk.atomistic.cellshape)

 	cerr() (in module httk)

 	(in module httk.core.console)

 	chain_vecs() (httk.core.vectors.fracvector.FracVector class method)

 	(httk.FracVector class method)

 	(httk.core.vectors.vector.Vector class method)

 	check_jsonapi_header_requirements() (in module httk.httkweb.jsonapi)

 	check_symop() (in module httk.atomistic.spacegrouputils)

 	checkvalid() (in module httk.core.ed25519)

 	cif2cell() (in module httk.external.cif2cell_ext)

 	cif_reader_httk_preprocessed() (in module httk.atomistic.atomisticio.structure_cif_io)

 	cif_reader_that_can_only_read_isotropy_cif() (in module httk.atomistic.atomisticio.structure_cif_io)

 	cif_to_sgstructure() (in module httk.external.platon_ext)

 	cif_to_struct() (in module httk.atomistic.atomisticio.structure_cif_io)

 	cif_to_structure_noreduce() (in module httk.external.cif2cell_ext)

 	cif_to_structure_reduce() (in module httk.external.cif2cell_ext)

 	cifdata_to_struct() (in module httk.atomistic.atomisticio.structure_cif_io)

 	clean() (httk.atomistic.Cell method)

 	(httk.atomistic.RepresentativeSites method)

 	(httk.atomistic.RepresentativeStructure method)

 	(httk.atomistic.Structure method)

 	(httk.atomistic.cell.Cell method)

 	(httk.atomistic.cellshape.CellShape method)

 	(httk.atomistic.representativesites.RepresentativeSites method)

 	(httk.atomistic.representativestructure.RepresentativeStructure method)

 	(httk.atomistic.sites.Sites method)

 	(httk.atomistic.structure.Structure method)

 	clean_coordgroups_and_assignments() (in module httk.atomistic.sitesutils)

 	(in module httk.atomistic.structureutils)

 	cleveropen() (in module httk.core.ioadapters)

 	close() (httk.core.ioadapters.IoAdapterFileAppender method)

 	(httk.IoAdapterFileAppender method)

 	(httk.IoAdapterFileReader method)

 	(httk.IoAdapterFileWriter method)

 	(httk.IoAdapterString method)

 	(httk.core.ioadapters.IoAdapterFileReader method)

 	(httk.core.ioadapters.IoAdapterFileWriter method)

 	(httk.core.ioadapters.IoAdapterFilename method)

 	(httk.core.ioadapters.IoAdapterString method)

 	(httk.db.backend.sqlite.Sqlite method)

 	(httk.db.backend.sqlite.Sqlite.SqliteCursor method)

 	Code (class in httk)

 	(class in httk.core.code)

 	CodeRef (class in httk.core.code)

 	CodeTag (class in httk.core.code)

 	Command (class in httk.external.command)

 	commit() (httk.db.backend.sqlite.Sqlite method)

 	(httk.db.store.sqlstore.SqlStore method)

 	competing_indices (httk.analysis.matsci.phasediagram.PhaseDiagram attribute)

 	Compound (class in httk.atomistic)

 	(class in httk.atomistic.compound)

 	CompoundName (class in httk.atomistic.compound)

 	CompoundRef (class in httk.atomistic)

 	(class in httk.atomistic.compound)

 	CompoundStructure (class in httk.atomistic)

 	(class in httk.atomistic.compound)

 	CompoundTag (class in httk.atomistic)

 	(class in httk.atomistic.compound)

 	Computation (class in httk)

 	(class in httk.core.computation)

 	ComputationProject (class in httk)

 	(class in httk.core.computation)

 	ComputationRef (class in httk.core.computation)

 	ComputationRelated (class in httk)

 	(class in httk.core.computation)

 	ComputationRelatedCompound (class in httk.atomistic.compound)

 	ComputationTag (class in httk.core.computation)

 	connections() (httk.atomistic.vis.jmolstructurevisualizer.JmolStructureVisualizer method)

 	constant_comparison_handler() (in module httk.optimade.optimade_filter_to_httk)

 	constant_set_handler() (in module httk.optimade.optimade_filter_to_httk)

 	constant_stringmatching_handler() (in module httk.optimade.optimade_filter_to_httk)

 	content() (httk.httkweb.render_httk.RenderHttk method)

 	(httk.httkweb.render_rst.RenderRst method)

 	coord_system (httk.analysis.matsci.phasediagram.PhaseDiagram attribute)

 	coordgroups_and_assignments_to_coords_and_occupancies() (in module httk.atomistic.structureutils)

 	coordgroups_and_assignments_to_symbols() (in module httk.atomistic.structureutils)

 	coordgroups_cartesian_to_reduced() (httk.atomistic.Cell method)

 	(httk.atomistic.cell.Cell method)

 	(httk.atomistic.cellshape.CellShape method)

 	(in module httk.atomistic.sitesutils)

 	(in module httk.atomistic.structureutils)

 	coordgroups_reduced_rc_to_unitcellsites() (in module httk.atomistic.structureutils)

 	(in module httk.external.ase_glue)

 	(in module httk.external.cif2cell_ext)

 	coordgroups_reduced_to_cartesian() (httk.atomistic.Cell method)

 	(httk.atomistic.cell.Cell method)

 	(httk.atomistic.cellshape.CellShape method)

 	(in module httk.atomistic.sitesutils)

 	coordgroups_reduced_to_unitcell() (in module httk.atomistic.sitesutils)

 	coordgroups_reduced_uc_to_representative() (in module httk.atomistic.structureutils)

 	coordgroups_to_coords() (in module httk.atomistic.sitesutils)

 	(in module httk.atomistic.structureutils)

 	
 	coords() (httk.analysis.matsci.phasediagram.PhaseDiagram method)

 	coords_and_counts_to_coordgroups() (in module httk.atomistic.sitesutils)

 	(in module httk.atomistic.structureutils)

 	coords_and_occupancies_to_coordgroups_and_assignments() (in module httk.atomistic.sitesutils)

 	(in module httk.atomistic.structureutils)

 	coords_cartesian_to_reduced() (httk.atomistic.Cell method)

 	(httk.atomistic.cell.Cell method)

 	(httk.atomistic.cellshape.CellShape method)

 	coords_groupnumber (httk.atomistic.sites.Sites attribute)

 	coords_reduced_to_cartesian() (httk.atomistic.Cell method)

 	(httk.atomistic.cell.Cell method)

 	(httk.atomistic.cellshape.CellShape method)

 	(in module httk.atomistic.sitesutils)

 	coords_to_coordgroups() (in module httk.atomistic.sitesutils)

 	(in module httk.atomistic.structureutils)

 	coordswap() (in module httk.atomistic.sitesutils)

 	(in module httk.atomistic.structureutils)

 	copy() (httk.db.filteredcollection.FCDict method)

 	(httk.db.filteredcollection.FCMultiDict method)

 	copy_template() (in module httk.iface.vasp_if)

 	copysign() (in module httk.core.vectors.vectormath)

 	cos() (httk.core.vectors.fracvector.FracVector method)

 	(httk.FracVector method)

 	(in module httk.core.vectors.vectormath)

 	cosh() (in module httk.core.vectors.vectormath)

 	count() (httk.db.filteredcollection.FCSqlite method)

 	(httk.optimade.httk_execute_query.HttkResults method)

 	counts (httk.atomistic.sites.Sites attribute)

 	cout() (in module httk)

 	(in module httk.core.console)

 	create() (httk.analysis.matsci.phasediagram.PhaseDiagram class method)

 	(httk.Author class method)

 	(httk.Code class method)

 	(httk.Computation class method)

 	(httk.ComputationProject class method)

 	(httk.ComputationRelated class method)

 	(httk.FracScalar class method)

 	(httk.FracVector class method)

 	(httk.Project class method)

 	(httk.Reference class method)

 	(httk.Result class method)

 	(httk.Signature class method)

 	(httk.SignatureKey class method)

 	(httk.atomistic.Assignments class method)

 	(httk.atomistic.Cell class method)

 	(httk.atomistic.Compound class method)

 	(httk.atomistic.CompoundStructure class method)

 	(httk.atomistic.RepresentativeSites class method)

 	(httk.atomistic.RepresentativeStructure class method)

 	(httk.atomistic.Structure class method)

 	(httk.atomistic.StructurePhaseDiagram class method)

 	(httk.atomistic.UnitcellStructure class method)

 	(httk.atomistic.assignment.Assignment class method)

 	(httk.atomistic.assignments.Assignments class method)

 	(httk.atomistic.cell.Cell class method)

 	(httk.atomistic.cellshape.CellShape class method)

 	(httk.atomistic.compound.Compound class method)

 	(httk.atomistic.compound.CompoundStructure class method)

 	(httk.atomistic.compound.ComputationRelatedCompound class method)

 	(httk.atomistic.representativesites.RepresentativeSites class method)

 	(httk.atomistic.representativestructure.RepresentativeStructure class method)

 	(httk.atomistic.siteassignment.SiteAssignment class method)

 	(httk.atomistic.sites.Sites class method)

 	(httk.atomistic.spacegroup.Spacegroup class method)

 	(httk.atomistic.structure.Structure class method)

 	(httk.atomistic.structurephasediagram.StructurePhaseDiagram class method)

 	(httk.atomistic.structurephasediagram.StructurePhaseDiagramCompetingIndicies class method)

 	(httk.atomistic.unitcellstructure.UnitcellStructure class method)

 	(httk.core.code.Code class method)

 	(httk.core.computation.Computation class method)

 	(httk.core.computation.ComputationProject class method)

 	(httk.core.computation.ComputationRelated class method)

 	(httk.core.computation.Result class method)

 	(httk.core.project.Project class method)

 	(httk.core.project.ProjectOwner class method)

 	(httk.core.reference.Author class method)

 	(httk.core.reference.Reference class method)

 	(httk.core.signature.Signature class method)

 	(httk.core.signature.SignatureKey class method)

 	(httk.core.vectors.fracvector.FracScalar class method)

 	(httk.core.vectors.fracvector.FracVector class method)

 	(httk.core.vectors.vector.Vector class method)

 	create_batch_task() (in module httk.task.taskmgr)

 	create_cos() (httk.core.vectors.fracvector.FracVector class method)

 	(httk.FracVector class method)

 	create_exp() (httk.core.vectors.fracvector.FracVector class method)

 	(httk.FracVector class method)

 	create_sin() (httk.core.vectors.fracvector.FracVector class method)

 	(httk.FracVector class method)

 	create_table() (httk.db.backend.sqlite.Sqlite method)

 	(httk.db.store.dictstore.DictStore method)

 	(httk.db.store.sqlstore.SqlStore method)

 	create_tmpdir() (in module httk.core.basic)

 	cross() (httk.core.vectors.fracvector.FracVector method)

 	(httk.FracVector method)

 	crystal_system (httk.atomistic.RepresentativeSites attribute)

 	(httk.atomistic.representativesites.RepresentativeSites attribute)

 	crystal_system_from_hall() (in module httk.atomistic.spacegrouputils)

 	crystal_system_from_spacegroupnbr() (in module httk.atomistic.spacegrouputils)

 	cubic() (httk.atomistic.supercellutils.StructureSupercellPlugin method)

 	cubic_supercell_transformation() (in module httk.atomistic.supercellutils)

 	cursor() (httk.db.backend.sqlite.Sqlite method)

D

 	
 	data() (httk.db.filteredcollection.FCDict method)

 	(httk.db.filteredcollection.FCMultiDict method)

 	db_close() (in module httk.db.backend.sqlite)

 	db_open() (in module httk.db.backend.sqlite)

 	db_sqlite_close_all() (in module httk.db.backend.sqlite)

 	DeclaredFunction (class in httk.db.filteredcollection)

 	decodeint() (in module httk.core.ed25519)

 	decodepoint() (in module httk.core.ed25519)

 	defaults_publish() (httk.atomistic.vis.jmolstructurevisualizer.JmolStructureVisualizer method)

 	degrees() (in module httk.core.vectors.vectormath)

 	delay_commit() (httk.db.store.sqlstore.SqlStore method)

 	description (httk.db.backend.sqlite.Sqlite.SqliteCursor attribute)

 	
 	destroy_tmpdir() (in module httk.core.basic)

 	det() (httk.core.vectors.fracvector.FracVector method)

 	(httk.FracVector method)

 	determine_optimade_version() (in module httk.optimade.validate)

 	determine_version_data() (in module httk.config.config)

 	DictStore (class in httk.db.store.dictstore)

 	DictStore.Keeper (class in httk.db.store.dictstore)

 	dim (httk.core.vectors.fracvector.FracVector attribute)

 	(httk.FracVector attribute)

 	dont_print_citations_at_exit() (in module httk.core.citation)

 	dot() (httk.core.vectors.fracvector.FracVector method)

 	(httk.FracVector method)

 	duplicate() (httk.db.filteredcollection.FilteredCollection method)

E

 	
 	e() (in module httk.core.vectors.vectormath)

 	ebnf_unqote() (in module httk.core.miniparser)

 	edwards() (in module httk.core.ed25519)

 	element_wyckoff_sequence (httk.atomistic.Structure attribute)

 	(httk.atomistic.structure.Structure attribute)

 	encodeint() (in module httk.core.ed25519)

 	encodepoint() (in module httk.core.ed25519)

 	ensure_ase_is_imported() (in module httk.external.ase_glue)

 	ensure_has_cif2cell() (in module httk.external.cif2cell_ext)

 	(in module httk.external.jmol)

 	ensure_has_isotropy() (in module httk.external.isotropy_ext)

 	ensure_has_platon() (in module httk.external.platon_ext)

 	ensure_pymatgen_is_imported() (in module httk.external.pymatgen_glue)

 	ensure_pyspg_is_imported() (in module httk.external.pyspglib_ext)

 	erf() (in module httk.core.vectors.vectormath)

 	erfc() (in module httk.core.vectors.vectormath)

 	ExceptionlessConfig (class in httk.config.config)

 	execute() (httk.db.backend.sqlite.Sqlite.SqliteCursor method)

 	(httk.httkweb.functionhandler_httk.FunctionHandlerHttk method)

 	
 	execute_and_format() (httk.httkweb.functionhandler_httk.FunctionHandlerHttk method)

 	exp() (httk.core.vectors.fracvector.FracVector method)

 	(httk.FracVector method)

 	(in module httk.core.vectors.vectormath)

 	expm1() (in module httk.core.vectors.vectormath)

 	expmod() (in module httk.core.ed25519)

 	Expression (class in httk.db.filteredcollection)

 	extbonds() (httk.atomistic.vis.jmolstructurevisualizer.JmolStructureVisualizer method)

 	extended (httk.atomistic.Assignments attribute)

 	(httk.atomistic.Structure attribute)

 	(httk.atomistic.assignments.Assignments attribute)

 	(httk.atomistic.structure.Structure attribute)

 	extensions (httk.atomistic.Structure attribute)

 	(httk.atomistic.structure.Structure attribute)

 	eye() (httk.core.vectors.fracvector.FracVector class method)

 	(httk.FracVector class method)

 	(httk.core.vectors.vector.Vector class method)

F

 	
 	fabs() (in module httk.core.vectors.vectormath)

 	factorial() (in module httk.core.vectors.vectormath)

 	false_handler() (in module httk.optimade.optimade_filter_to_httk)

 	fc_checkcontext() (in module httk.db.filteredcollection)

 	fc_eval() (in module httk.db.filteredcollection)

 	fc_get_srctable_context() (in module httk.db.filteredcollection)

 	fc_sql() (in module httk.db.filteredcollection)

 	FCDict (class in httk.db.filteredcollection)

 	FCMultiDict (class in httk.db.filteredcollection)

 	FCMultiSqlite (class in httk.db.filteredcollection)

 	FCSqlite (class in httk.db.filteredcollection)

 	fetch_codependent_data() (httk.db.httkobjdbplugin.HttkObjDbPlugin method)

 	fetchall() (httk.db.backend.sqlite.Sqlite.SqliteCursor method)

 	fetchone() (httk.db.backend.sqlite.Sqlite.SqliteCursor method)

 	filter_hm() (in module httk.atomistic.spacegrouputils)

 	filter_itcnbr_setting() (in module httk.atomistic.spacegrouputils)

 	filter_sf() (in module httk.atomistic.spacegrouputils)

 	filter_symops() (in module httk.atomistic.spacegrouputils)

 	FilteredCollection (class in httk.db.filteredcollection)

 	find_all() (httk.db.storable.Storable class method)

 	find_executable() (in module httk.external.command)

 	find_index() (in module httk.atomistic.data.spacegroups)

 	find_one() (httk.db.storable.Storable class method)

 	find_symmetry() (httk.atomistic.Structure method)

 	(httk.atomistic.structure.Structure method)

 	flatten() (httk.core.vectors.fracvector.FracVector method)

 	(httk.FracVector method)

 	(in module httk.core.basic)

 	floor() (httk.core.vectors.fracvector.FracVector method)

 	(httk.FracVector method)

 	(in module httk.core.vectors.vectormath)

 	fmod() (in module httk.core.vectors.vectormath)

 	format_field() (httk.httkweb.templateengine_httk.HttkTemplateFormatter method)

 	format_optimade_error() (in module httk.optimade.error)

 	format_output() (in module httk.optimade.serve)

 	format_value() (in module httk.optimade.optimade_filter_to_httk)

 	formula (httk.atomistic.Structure attribute)

 	(httk.atomistic.structure.Structure attribute)

 	formula_builder (httk.atomistic.RepresentativeStructure attribute)

 	(httk.atomistic.UnitcellStructure attribute)

 	(httk.atomistic.representativestructure.RepresentativeStructure attribute)

 	(httk.atomistic.unitcellstructure.UnitcellStructure attribute)

 	formula_counts (httk.atomistic.Compound attribute)

 	(httk.atomistic.Structure attribute)

 	(httk.atomistic.compound.Compound attribute)

 	(httk.atomistic.structure.Structure attribute)

 	
 	formula_spaceseparated (httk.atomistic.Structure attribute)

 	(httk.atomistic.structure.Structure attribute)

 	formula_symbols (httk.atomistic.Compound attribute)

 	(httk.atomistic.Structure attribute)

 	(httk.atomistic.compound.Compound attribute)

 	(httk.atomistic.structure.Structure attribute)

 	frac_acos() (in module httk.core.vectors.fracmath)

 	frac_acos_alt() (in module httk.core.vectors.fracmath)

 	frac_acos_old() (in module httk.core.vectors.fracmath)

 	frac_asin() (in module httk.core.vectors.fracmath)

 	frac_atan() (in module httk.core.vectors.fracmath)

 	frac_atan2() (in module httk.core.vectors.fracmath)

 	frac_atan_old() (in module httk.core.vectors.fracmath)

 	frac_cos() (in module httk.core.vectors.fracmath)

 	frac_exp() (in module httk.core.vectors.fracmath)

 	frac_exp_old() (in module httk.core.vectors.fracmath)

 	frac_log() (in module httk.core.vectors.fracmath)

 	frac_log10() (in module httk.core.vectors.fracmath)

 	frac_log_old() (in module httk.core.vectors.fracmath)

 	frac_pi() (in module httk.core.vectors.fracmath)

 	frac_pi_old() (in module httk.core.vectors.fracmath)

 	frac_sin() (in module httk.core.vectors.fracmath)

 	frac_sin_old() (in module httk.core.vectors.fracmath)

 	frac_sqrt() (in module httk.core.vectors.fracmath)

 	frac_sqrt_old() (in module httk.core.vectors.fracmath)

 	frac_tan() (in module httk.core.vectors.fracmath)

 	FracScalar (class in httk)

 	(class in httk.core.vectors.fracvector)

 	fraction_from_continued_fraction() (in module httk.core.vectors.fracmath)

 	FracVector (class in httk)

 	(class in httk.core.vectors.fracvector)

 	frexp() (in module httk.core.vectors.vectormath)

 	from_Atoms() (httk.external.ase_glue.StructureAsePlugin class method)

 	from_floats() (httk.core.vectors.fracvector.FracVector class method)

 	(httk.FracVector class method)

 	from_FracVector() (httk.core.vectors.mutablefracvector.MutableFracVector class method)

 	(httk.MutableFracVector class method)

 	from_tuple() (httk.core.vectors.fracvector.FracVector class method)

 	(httk.FracVector class method)

 	fsum() (in module httk.core.vectors.vectormath)

 	Function (class in httk.db.filteredcollection)

 	function() (httk.db.filteredcollection.FCDict method)

 	(httk.db.filteredcollection.FCSqlite method)

 	FunctionHandlerHttk (class in httk.httkweb.functionhandler_httk)

G

 	
 	gamma() (in module httk.core.vectors.vectormath)

 	ged_prestacked() (httk.core.vectors.fracvector.FracVector method)

 	(httk.FracVector method)

 	(httk.core.vectors.vector.Vector method)

 	ged_stackedinsert() (httk.core.vectors.fracvector.FracVector method)

 	(httk.FracVector method)

 	(httk.core.vectors.vector.Vector method)

 	general() (httk.atomistic.supercellutils.StructureSupercellPlugin method)

 	generate_base_endpoint_reply() (in module httk.optimade.info_endpoint)

 	generate_entry_endpoint_reply() (in module httk.optimade.entry_endpoint)

 	generate_entry_info_endpoint_reply() (in module httk.optimade.info_endpoint)

 	generate_fake_potentials() (in module httk.iface.gulp_if)

 	generate_fake_potentials_try2() (in module httk.iface.gulp_if)

 	generate_info_endpoint_reply() (in module httk.optimade.info_endpoint)

 	generate_keys() (in module httk.core.crypto)

 	generate_links_endpoint_reply() (in module httk.optimade.info_endpoint)

 	generate_meta() (in module httk.optimade.meta)

 	generate_single_entry_endpoint_reply() (in module httk.optimade.entry_endpoint)

 	generate_versions_endpoint_reply() (in module httk.optimade.info_endpoint)

 	get() (httk.db.store.dictstore.DictStore method)

 	(httk.db.store.sqlstore.SqlStore method)

 	get_append() (httk.core.vectors.fracvector.FracVector method)

 	(httk.FracVector method)

 	(httk.core.vectors.vector.Vector method)

 	get_axes_standard_order_transform() (httk.atomistic.Cell method)

 	(httk.atomistic.cell.Cell method)

 	get_cartesian_coordgroups() (httk.atomistic.sites.Sites method)

 	get_cartesian_coords() (httk.atomistic.sites.Sites method)

 	get_codependent_data() (httk.core.httkobject.HttkObject method)

 	(httk.HttkObject method)

 	get_continued_fraction() (in module httk.core.vectors.fracmath)

 	get_crypto_signature() (in module httk.core.crypto)

 	get_dependency_filenames() (httk.httkweb.functionhandler_httk.FunctionHandlerHttk method)

 	(httk.httkweb.templateengine_httk.TemplateEngineHttk method)

 	(httk.httkweb.templateengine_templator.TemplateEngineTemplator method)

 	get_extend() (httk.core.vectors.fracvector.FracVector method)

 	(httk.FracVector method)

 	(httk.core.vectors.vector.Vector method)

 	get_extensions() (httk.atomistic.assignment.Assignment method)

 	(httk.atomistic.siteassignment.SiteAssignment method)

 	get_field() (httk.httkweb.templateengine_httk.HttkTemplateFormatter method)

 	get_hall() (in module httk.atomistic.spacegrouputils)

 	get_hm_setting() (in module httk.atomistic.spacegrouputils)

 	get_insert() (httk.core.vectors.fracvector.FracVector method)

 	(httk.FracVector method)

 	(httk.core.vectors.vector.Vector method)

 	get_itcnbr_setting() (in module httk.atomistic.spacegrouputils)

 	get_magmom() (in module httk.iface.vasp_if)

 	get_magnetizations() (in module httk.iface.vasp_if)

 	get_names() (httk.atomistic.Compound method)

 	(httk.atomistic.compound.Compound method)

 	get_nonstandard_hall() (in module httk.atomistic.spacegrouputils)

 	get_normalized() (httk.atomistic.Cell method)

 	(httk.atomistic.cell.Cell method)

 	get_normalized_longestvec() (httk.atomistic.Cell method)

 	(httk.atomistic.cell.Cell method)

 	get_phasediagram() (httk.atomistic.StructurePhaseDiagram method)

 	(httk.atomistic.structurephasediagram.StructurePhaseDiagram method)

 	
 	get_prepend() (httk.core.vectors.fracvector.FracVector method)

 	(httk.FracVector method)

 	(httk.core.vectors.vector.Vector method)

 	get_prextend() (httk.core.vectors.fracvector.FracVector method)

 	(httk.FracVector method)

 	(httk.core.vectors.vector.Vector method)

 	get_primitive_basis_transform() (in module httk.atomistic.structureutils)

 	get_primitive_to_conventional_basis_transform() (in module httk.atomistic.cellutils)

 	get_projects() (httk.Computation method)

 	(httk.core.computation.Computation method)

 	get_proper_hm_symbol() (in module httk.atomistic.data.spacegroups)

 	get_pseudopotential() (in module httk.iface.vasp_if)

 	get_refs() (httk.atomistic.Compound method)

 	(httk.Code method)

 	(httk.Computation method)

 	(httk.Project method)

 	(httk.atomistic.Structure method)

 	(httk.atomistic.compound.Compound method)

 	(httk.atomistic.structure.Structure method)

 	(httk.core.code.Code method)

 	(httk.core.computation.Computation method)

 	(httk.core.project.Project method)

 	get_row() (httk.db.backend.sqlite.Sqlite method)

 	get_rows() (httk.db.backend.sqlite.Sqlite method)

 	get_srctable_context() (httk.db.filteredcollection.Expression method)

 	get_stacked() (httk.core.vectors.fracvector.FracVector method)

 	(httk.FracVector method)

 	(httk.core.vectors.vector.Vector method)

 	get_stidy_spacegroup() (in module httk.iface.platon_if)

 	get_symops() (in module httk.atomistic.spacegrouputils)

 	get_symops_strs() (in module httk.atomistic.spacegrouputils)

 	get_symopshash() (in module httk.atomistic.spacegrouputils)

 	get_tag() (httk.atomistic.Compound method)

 	(httk.Code method)

 	(httk.Computation method)

 	(httk.Project method)

 	(httk.atomistic.Structure method)

 	(httk.atomistic.compound.Compound method)

 	(httk.atomistic.structure.Structure method)

 	(httk.core.code.Code method)

 	(httk.core.computation.Computation method)

 	(httk.core.project.Project method)

 	get_tags() (httk.atomistic.Compound method)

 	(httk.Code method)

 	(httk.Computation method)

 	(httk.Project method)

 	(httk.atomistic.Structure method)

 	(httk.atomistic.compound.Compound method)

 	(httk.atomistic.structure.Structure method)

 	(httk.core.code.Code method)

 	(httk.core.computation.Computation method)

 	(httk.core.project.Project method)

 	get_uc_sites() (httk.atomistic.RepresentativeSites method)

 	(httk.atomistic.representativesites.RepresentativeSites method)

 	get_val() (httk.db.backend.sqlite.Sqlite method)

 	get_weight() (httk.atomistic.assignment.Assignment method)

H

 	
 	H() (in module httk.core.ed25519)

 	hall_symbol (httk.atomistic.Structure attribute)

 	(httk.atomistic.structure.Structure attribute)

 	handle_data() (httk.httkweb.app_curses.MyHTMLParser method)

 	handle_endtag() (httk.httkweb.app_curses.MyHTMLParser method)

 	handle_startendtag() (httk.httkweb.app_curses.MyHTMLParser method)

 	handle_starttag() (httk.httkweb.app_curses.MyHTMLParser method)

 	has_any() (httk.db.filteredcollection.Expression method)

 	has_inv_any() (httk.db.filteredcollection.Expression method)

 	has_inv_only() (httk.db.filteredcollection.Expression method)

 	has_only() (httk.db.filteredcollection.Expression method)

 	has_rc_repr (httk.atomistic.Structure attribute)

 	(httk.atomistic.structure.Structure attribute)

 	has_uc_repr (httk.atomistic.Structure attribute)

 	(httk.atomistic.structure.Structure attribute)

 	hexhash (httk.core.httkobject.HttkObject attribute)

 	(httk.HttkObject attribute)

 	hexhash_ioa() (in module httk.core.crypto)

 	hexhash_str() (in module httk.core.crypto)

 	Hint() (in module httk.core.ed25519)

 	httk (module)

 	httk.analysis (module)

 	httk.analysis.matsci (module)

 	httk.analysis.matsci.phasediagram (module)

 	httk.analysis.matsci.vis (module)

 	httk.analysis.matsci.vis.phasediagramvisualizerplugin (module)

 	httk.atomistic (module)

 	httk.atomistic.assignment (module)

 	httk.atomistic.assignments (module)

 	httk.atomistic.atomisticio (module)

 	httk.atomistic.atomisticio.structure_cif_io (module)

 	httk.atomistic.atomisticio.structure_io (module)

 	httk.atomistic.atomisticio.structureioplugin (module)

 	httk.atomistic.cell (module)

 	httk.atomistic.cellshape (module)

 	httk.atomistic.cellutils (module)

 	httk.atomistic.cli (module)

 	httk.atomistic.compound (module)

 	httk.atomistic.data (module)

 	httk.atomistic.data.periodictable (module)

 	httk.atomistic.data.spacegroups (module)

 	httk.atomistic.formulautils (module)

 	httk.atomistic.representativesites (module)

 	httk.atomistic.representativestructure (module)

 	httk.atomistic.results (module)

 	httk.atomistic.results.relaxedcellresult (module)

 	httk.atomistic.results.totalenergyresult (module)

 	httk.atomistic.siteassignment (module)

 	httk.atomistic.sites (module)

 	httk.atomistic.sitesutils (module)

 	httk.atomistic.spacegroup (module)

 	httk.atomistic.spacegrouputils (module)

 	httk.atomistic.structure (module)

 	httk.atomistic.structurephasediagram (module)

 	httk.atomistic.structureutils (module)

 	httk.atomistic.supercellutils (module)

 	httk.atomistic.unitcellsites (module)

 	httk.atomistic.unitcellstructure (module)

 	httk.atomistic.vis (module)

 	httk.atomistic.vis.asestructurevisualizer (module)

 	httk.atomistic.vis.jmolstructurevisualizer (module)

 	httk.atomistic.vis.structurephasediagramvisualizerplugin (module)

 	httk.atomistic.vis.structurevisualizerplugin (module)

 	httk.cli (module)

 	httk.config (module)

 	httk.config.config (module)

 	httk.core (module)

 	httk.core.basic (module)

 	httk.core.citation (module)

 	httk.core.code (module)

 	httk.core.computation (module)

 	httk.core.console (module)

 	httk.core.crypto (module)

 	httk.core.ed25519 (module)

 	httk.core.geometry (module)

 	httk.core.httkobject (module)

 	httk.core.ioadapters (module)

 	httk.core.miniparser (module)

 	httk.core.project (module)

 	httk.core.reference (module)

 	httk.core.signature (module)

 	httk.core.template (module)

 	httk.core.vectors (module)

 	httk.core.vectors.fracmath (module)

 	httk.core.vectors.fracvector (module)

 	httk.core.vectors.mutablefracvector (module)

 	httk.core.vectors.vector (module)

 	httk.core.vectors.vectormath (module)

 	httk.db (module)

 	httk.db.backend (module)

 	httk.db.backend.sqlite (module)

 	httk.db.filteredcollection (module)

 	httk.db.httkobjdbplugin (module)

 	httk.db.storable (module)

 	httk.db.store (module)

 	httk.db.store.dictstore (module)

 	httk.db.store.sqlstore (module)

 	httk.db.store.trivialstore (module)

 	httk.external (module)

 	
 	httk.external.aflow_ext (module)

 	httk.external.ase_glue (module)

 	httk.external.cif2cell_ext (module)

 	httk.external.command (module)

 	httk.external.gulp_ext (module)

 	httk.external.isotropy_ext (module)

 	httk.external.jmol (module)

 	httk.external.platon_ext (module)

 	httk.external.pymatgen_glue (module)

 	httk.external.pyspglib_ext (module)

 	httk.external.subimport (module)

 	httk.graphics (module)

 	httk.graphics.matplotlib (module)

 	httk.httkio (module)

 	httk.httkio.cif (module)

 	httk.httkio.load (module)

 	httk.httkio.save (module)

 	httk.httkweb (module)

 	httk.httkweb.app_curses (module)

 	httk.httkweb.app_qt5 (module)

 	httk.httkweb.functionhandler_httk (module)

 	httk.httkweb.helpers (module)

 	httk.httkweb.jsonapi (module)

 	httk.httkweb.publish (module)

 	httk.httkweb.render_httk (module)

 	httk.httkweb.render_rst (module)

 	httk.httkweb.serve (module)

 	httk.httkweb.templateengine_httk (module)

 	httk.httkweb.templateengine_templator (module)

 	httk.httkweb.webgenerator (module)

 	httk.httkweb.webserver (module)

 	httk.httkweb.wsgi (module)

 	httk.iface (module)

 	httk.iface.ase_if (module)

 	httk.iface.cif2cell_if (module)

 	httk.iface.gulp_if (module)

 	httk.iface.isotropy_if (module)

 	httk.iface.jmol_if (module)

 	httk.iface.openbabel_if_notstable (module)

 	httk.iface.platon_if (module)

 	httk.iface.spglib_if (module)

 	httk.iface.vasp_if (module)

 	httk.optimade (module)

 	httk.optimade.entry_endpoint (module)

 	httk.optimade.error (module)

 	httk.optimade.httk_entries (module)

 	httk.optimade.httk_execute_query (module)

 	httk.optimade.info_endpoint (module)

 	httk.optimade.meta (module)

 	httk.optimade.optimade_entries (module)

 	httk.optimade.optimade_filter_to_httk (module)

 	httk.optimade.parse_optimade_filter (module)

 	httk.optimade.process (module)

 	httk.optimade.serve (module)

 	httk.optimade.validate (module)

 	httk.optimade.validation (module)

 	httk.optimade.validation.all (module)

 	httk.optimade.validation.base_info (module)

 	httk.optimade.validation.entry (module)

 	httk.optimade.validation.exception (module)

 	httk.optimade.validation.headers (module)

 	httk.optimade.validation.request (module)

 	httk.optimade.validation.response (module)

 	httk.optimade.versions (module)

 	httk.task (module)

 	httk.task.reader (module)

 	httk.task.taskmgr (module)

 	httk.versioning (module)

 	httk_execute_query() (in module httk.optimade.httk_execute_query)

 	httk_typed_init() (in module httk)

 	(in module httk.core.httkobject)

 	httk_typed_init_delayed() (in module httk)

 	(in module httk.core.httkobject)

 	httk_typed_property() (in module httk)

 	(in module httk.core.httkobject)

 	httk_typed_property_delayed() (in module httk)

 	(in module httk.core.httkobject)

 	httk_typed_property_resolve() (in module httk.core.httkobject)

 	HttkObjDbPlugin (class in httk.db.httkobjdbplugin)

 	HttkObject (class in httk)

 	(class in httk.core.httkobject)

 	HttkPlugin (class in httk)

 	(class in httk.core.httkobject)

 	HttkPluginPlaceholder (class in httk)

 	(class in httk.core.httkobject)

 	HttkPluginWrapper (class in httk)

 	(class in httk.core.httkobject)

 	HttkResults (class in httk.optimade.httk_execute_query)

 	HttkTemplateFormatter (class in httk.httkweb.templateengine_httk)

 	HttkTypedProperty (class in httk.core.httkobject)

 	hull_competing_indices (httk.analysis.matsci.phasediagram.PhaseDiagram attribute)

 	hull_competing_phase_lines() (httk.analysis.matsci.phasediagram.PhaseDiagram method)

 	hull_distances (httk.analysis.matsci.phasediagram.PhaseDiagram attribute)

 	hull_indices (httk.analysis.matsci.phasediagram.PhaseDiagram attribute)

 	hull_point_coords() (httk.analysis.matsci.phasediagram.PhaseDiagram method)

 	hull_points() (httk.analysis.matsci.phasediagram.PhaseDiagram method)

 	hull_to_interior_competing_phase_lines() (httk.analysis.matsci.phasediagram.PhaseDiagram method)

 	hull_z() (in module httk.core.geometry)

 	hypot() (in module httk.core.vectors.vectormath)

I

 	
 	identify() (in module httk.httkweb.helpers)

 	ignore_close_tags (httk.httkweb.app_curses.MyHTMLParser attribute)

 	ignore_content (httk.httkweb.app_curses.MyHTMLParser attribute)

 	initialize() (httk.atomistic.vis.jmolstructurevisualizer.JmolStructureVisualizer method)

 	initialize_optimade_parser() (in module httk.optimade.parse_optimade_filter)

 	inmap() (in module httk.core.vectors.mutablefracvector)

 	insert() (httk.db.backend.sqlite.Sqlite method)

 	(httk.db.store.dictstore.DictStore method)

 	(httk.db.store.sqlstore.SqlStore method)

 	insert_row() (httk.db.backend.sqlite.Sqlite method)

 	instantiate_from_store() (in module httk.db.filteredcollection)

 	int_to_anonymous_symbol() (in module httk.core.basic)

 	integer_sqrt() (in module httk.core.vectors.fracmath)

 	interior_competing_phase_lines() (httk.analysis.matsci.phasediagram.PhaseDiagram method)

 	interior_point_coords() (httk.analysis.matsci.phasediagram.PhaseDiagram method)

 	internal_coordgroups_reduced_rc_to_unitcellsites() (in module httk.atomistic.structureutils)

 	inv() (httk.core.vectors.fracvector.FracVector method)

 	(httk.FracVector method)

 	(in module httk.core.ed25519)

 	invalidate() (httk.core.vectors.mutablefracvector.MutableFracVector method)

 	(httk.MutableFracVector method)

 	io (httk.atomistic.Structure attribute)

 	(httk.atomistic.structure.Structure attribute)

 	IoAdapterFileAppender (class in httk)

 	(class in httk.core.ioadapters)

 	
 	IoAdapterFilename (class in httk.core.ioadapters)

 	IoAdapterFileReader (class in httk)

 	(class in httk.core.ioadapters)

 	IoAdapterFileWriter (class in httk)

 	(class in httk.core.ioadapters)

 	IoAdapterString (class in httk)

 	(class in httk.core.ioadapters)

 	IoAdapterStringList (class in httk), [1]

 	(class in httk.core.ioadapters)

 	is_any_part_of_cube_inside_cell() (in module httk.core.geometry)

 	is_dualmagnetic() (in module httk.iface.vasp_if)

 	is_in() (httk.db.filteredcollection.Expression method)

 	is_point_inside() (httk.atomistic.Cell method)

 	(httk.atomistic.cell.Cell method)

 	(httk.atomistic.cellshape.CellShape method)

 	is_point_inside_cell() (in module httk.core.geometry)

 	is_point_inside_tetra() (in module httk.core.geometry)

 	is_string() (in module httk.core.vectors.fracmath)

 	is_unary() (in module httk.core.basic)

 	isanyinf() (in module httk.core.vectors.vectormath)

 	isanynan() (in module httk.core.vectors.vectormath)

 	isinf() (in module httk.core.vectors.vectormath)

 	isnan() (in module httk.core.vectors.vectormath)

 	isoncurve() (in module httk.core.ed25519)

 	isotropy() (in module httk.external.isotropy_ext)

J

 	
 	jmol() (in module httk.external.gulp_ext)

 	
 	JmolStructureVisualizer (class in httk.atomistic.vis.jmolstructurevisualizer)

 	JsonapiError

K

 	
 	known_unknown_handler() (in module httk.optimade.optimade_filter_to_httk)

L

 	
 	lattice_symbol (httk.atomistic.RepresentativeSites attribute)

 	(httk.atomistic.representativesites.RepresentativeSites attribute)

 	lattice_symbol_from_hall() (in module httk.atomistic.spacegrouputils)

 	lattice_system (httk.atomistic.RepresentativeSites attribute)

 	(httk.atomistic.representativesites.RepresentativeSites attribute)

 	lattice_system_from_hall() (in module httk.atomistic.spacegrouputils)

 	lattice_system_from_lengths_and_cosangles() (in module httk.atomistic.cellutils)

 	lattice_system_from_niggli() (in module httk.atomistic.cellutils)

 	lattice_type_from_hall() (in module httk.atomistic.spacegrouputils)

 	ldexp() (in module httk.core.vectors.vectormath)

 	left_punctuation_chars (httk.httkweb.render_httk.RenderHttk attribute)

 	lengths_and_angles_to_niggli() (in module httk.atomistic.cellutils)

 	lengths_and_cosangles_to_conventional_basis() (in module httk.atomistic.cellutils)

 	lengths_and_cosangles_to_niggli() (in module httk.atomistic.cellutils)

 	lengths_angles_to_niggli() (in module httk.atomistic.structureutils)

 	lengthsqr() (httk.core.vectors.fracvector.FracVector method)

 	(httk.FracVector method)

 	
 	lexer() (in module httk.core.miniparser)

 	lgamma() (in module httk.core.vectors.vectormath)

 	like() (httk.db.filteredcollection.Expression method)

 	limit_denominator() (httk.core.vectors.fracvector.FracVector method)

 	(httk.FracVector method)

 	line_coords() (httk.analysis.matsci.phasediagram.PhaseDiagram method)

 	list_set_slice() (in module httk.core.vectors.mutablefracvector)

 	list_slice() (in module httk.core.vectors.mutablefracvector)

 	load() (httk.atomistic.atomisticio.structureioplugin.StructureIoPlugin class method)

 	(in module httk)

 	(in module httk.httkio.load)

 	load_struct() (in module httk.atomistic.atomisticio.structure_io)

 	log() (in module httk.core.vectors.vectormath)

 	log10() (in module httk.core.vectors.vectormath)

 	log1p() (in module httk.core.vectors.vectormath)

 	logger() (in module httk.core.miniparser)

 	LogVerbosity (class in httk.core.miniparser)

M

 	
 	magnetization_recurse() (in module httk.iface.vasp_if)

 	main() (in module httk.atomistic.assignment)

 	(in module httk.atomistic.assignments)

 	(in module httk.atomistic.cell)

 	(in module httk.atomistic.cellshape)

 	(in module httk.atomistic.cellutils)

 	(in module httk.atomistic.cli)

 	(in module httk.atomistic.compound)

 	(in module httk.atomistic.representativesites)

 	(in module httk.atomistic.representativestructure)

 	(in module httk.atomistic.siteassignment)

 	(in module httk.atomistic.sites)

 	(in module httk.atomistic.sitesutils)

 	(in module httk.atomistic.spacegroup)

 	(in module httk.atomistic.spacegrouputils)

 	(in module httk.atomistic.structure)

 	(in module httk.atomistic.structurephasediagram)

 	(in module httk.atomistic.structureutils)

 	(in module httk.atomistic.unitcellsites)

 	(in module httk.cli)

 	(in module httk.core.basic)

 	(in module httk.core.code)

 	(in module httk.core.computation)

 	(in module httk.core.crypto)

 	(in module httk.core.ed25519)

 	(in module httk.core.ioadapters)

 	(in module httk.core.project)

 	(in module httk.core.reference)

 	(in module httk.core.signature)

 	(in module httk.core.vectors.fracmath)

 	(in module httk.core.vectors.fracvector)

 	(in module httk.core.vectors.mutablefracvector)

 	(in module httk.core.vectors.vector)

 	(in module httk.core.vectors.vectormath)

 	(in module httk.external.jmol)

 	(in module httk.httkio.cif)

 	(in module httk.task.reader)

 	
 	make_id() (httk.httkweb.render_httk.RenderHttk method)

 	manifest_dir() (in module httk.core.crypto)

 	max() (httk.core.vectors.fracvector.FracVector method)

 	(httk.FracVector method)

 	metadata() (httk.httkweb.render_httk.RenderHttk method)

 	(httk.httkweb.render_rst.RenderRst method)

 	metric_product() (httk.core.vectors.fracvector.FracVector method)

 	(httk.FracVector method)

 	metric_to_niggli() (in module httk.atomistic.cellutils)

 	(in module httk.atomistic.structureutils)

 	micro_pyawk() (in module httk.core.basic)

 	min() (httk.core.vectors.fracvector.FracVector method)

 	(httk.FracVector method)

 	mkdir_p() (in module httk.core.basic)

 	modf() (in module httk.core.vectors.vectormath)

 	modify_structure() (httk.db.backend.sqlite.Sqlite method)

 	most_common_mass() (in module httk.atomistic.data.periodictable)

 	mul() (httk.core.vectors.fracvector.FracVector method)

 	(httk.FracVector method)

 	MutableFracVector (class in httk)

 	(class in httk.core.vectors.mutablefracvector)

 	MutableVector (class in httk.core.vectors.vector)

 	MyHTMLParser (class in httk.httkweb.app_curses)

N

 	
 	name (httk.external.ase_glue.StructureAsePlugin attribute)

 	nargmax() (httk.core.vectors.fracvector.FracVector method)

 	(httk.FracVector method)

 	nargmin() (httk.core.vectors.fracvector.FracVector method)

 	(httk.FracVector method)

 	nested_inmap() (httk.core.vectors.mutablefracvector.MutableFracVector static method)

 	(httk.MutableFracVector static method)

 	nested_inmap_list() (in module httk.core.vectors.mutablefracvector)

 	nested_map() (httk.core.vectors.fracvector.FracVector static method)

 	(httk.FracVector static method)

 	(httk.MutableFracVector static method)

 	(httk.core.vectors.mutablefracvector.MutableFracVector static method)

 	nested_map_fractions() (httk.core.vectors.fracvector.FracVector static method)

 	(httk.FracVector static method)

 	(httk.MutableFracVector static method)

 	(httk.core.vectors.mutablefracvector.MutableFracVector static method)

 	nested_map_fractions_list() (in module httk.core.vectors.fracvector)

 	(in module httk.core.vectors.vector)

 	nested_map_fractions_tuple() (in module httk.core.vectors.fracvector)

 	nested_map_list() (in module httk.core.vectors.fracvector)

 	(in module httk.core.vectors.vector)

 	nested_map_tuple() (in module httk.core.vectors.fracvector)

 	nested_reduce() (in module httk.core.vectors.fracvector)

 	(in module httk.core.vectors.vector)

 	nested_reduce_fractions() (in module httk.core.vectors.fracvector)

 	(in module httk.core.vectors.vector)

 	nested_reduce_levels() (in module httk.core.vectors.fracvector)

 	(in module httk.core.vectors.vector)

 	nested_split() (in module httk.core.basic)

 	new() (httk.db.storable.TrivialStore method)

 	(httk.db.store.dictstore.DictStore method)

 	(httk.db.store.sqlstore.SqlStore method)

 	(httk.db.store.trivialstore.TrivialStore method)

 	new_from() (httk.core.httkobject.HttkObject class method)

 	(httk.HttkObject class method)

 	
 	next() (httk.core.basic.rewindable_iterator method)

 	(httk.optimade.httk_execute_query.HttkResults method)

 	niggli_scale_to_vol() (in module httk.atomistic.cellutils)

 	(in module httk.atomistic.structureutils)

 	niggli_to_basis() (in module httk.atomistic.cellutils)

 	(in module httk.atomistic.structureutils)

 	niggli_to_cell_old() (in module httk.atomistic.structureutils)

 	niggli_to_conventional_basis() (in module httk.atomistic.cellutils)

 	niggli_to_lengths_and_angles() (in module httk.atomistic.cellutils)

 	niggli_to_lengths_and_trigangles() (in module httk.atomistic.cellutils)

 	niggli_to_lengths_angles() (in module httk.atomistic.structureutils)

 	niggli_to_metric() (in module httk.atomistic.cellutils)

 	(in module httk.atomistic.structureutils)

 	niggli_vol_to_scale() (in module httk.atomistic.structureutils)

 	nom (httk.core.vectors.fracvector.FracVector attribute)

 	(httk.FracVector attribute)

 	normalization_longestvec_scale (httk.atomistic.Cell attribute)

 	(httk.atomistic.cell.Cell attribute)

 	normalization_scale (httk.atomistic.Cell attribute)

 	(httk.atomistic.cell.Cell attribute)

 	normalize() (httk.core.vectors.fracvector.FracVector method)

 	(httk.FracVector method)

 	normalize_half() (httk.core.vectors.fracvector.FracVector method)

 	(httk.FracVector method)

 	normalized_formula() (in module httk.atomistic.structureutils)

 	normalized_formula_parts() (in module httk.atomistic.sitesutils)

 	(in module httk.atomistic.structureutils)

 	number (httk.atomistic.spacegroup.Spacegroup attribute)

 	number_and_setting (httk.atomistic.spacegroup.Spacegroup attribute)

 	number_handler() (in module httk.optimade.optimade_filter_to_httk)

 	number_of_elements (httk.atomistic.Compound attribute)

 	(httk.atomistic.Structure attribute)

 	(httk.atomistic.compound.Compound attribute)

 	(httk.atomistic.structure.Structure attribute)

 	numpy_quickhull_2d() (in module httk.core.geometry)

O

 	
 	occupations_and_coords_to_assignments_and_coordgroups() (in module httk.atomistic.structureutils)

 	open_url() (httk.httkweb.app_curses.WebviewCurses method)

 	optimade_filter_to_httk() (in module httk.optimade.optimade_filter_to_httk)

 	optimade_filter_to_httk_recurse() (in module httk.optimade.optimade_filter_to_httk)

 	optimade_parse_tree_to_ojf() (in module httk.optimade.parse_optimade_filter)

 	optimade_parse_tree_to_ojf_recurse() (in module httk.optimade.parse_optimade_filter)

 	OptimadeError

 	
 	option_list_characters (httk.httkweb.render_httk.RenderHttk attribute)

 	orthogonal() (httk.atomistic.supercellutils.StructureSupercellPlugin method)

 	orthogonal_supercell_transformation() (in module httk.atomistic.supercellutils)

 	other_point_coords() (httk.analysis.matsci.phasediagram.PhaseDiagram method)

 	out_to_cif() (in module httk.iface.isotropy_if)

 	out_to_struct() (in module httk.iface.cif2cell_if)

 	OutcarReader (class in httk.iface.vasp_if)

 	output() (httk.db.filteredcollection.FilteredCollection method)

P

 	
 	Page (class in httk.httkweb.webgenerator)

 	params() (httk.analysis.matsci.vis.phasediagramvisualizerplugin.PhaseDiagramVisualizerPlugin method)

 	(httk.atomistic.vis.structurevisualizerplugin.StructureVisualizerPlugin method)

 	parse() (httk.iface.vasp_if.OutcarReader method)

 	parse_optimade_filter() (in module httk.optimade.parse_optimade_filter)

 	parse_optimade_filter_raw() (in module httk.optimade.parse_optimade_filter)

 	parse_parexpr() (in module httk.core.basic)

 	parser() (in module httk.core.miniparser)

 	ParserError

 	ParserGrammarError

 	ParserInternalError

 	ParserSyntaxError

 	pbc (httk.atomistic.RepresentativeStructure attribute)

 	(httk.atomistic.Structure attribute)

 	(httk.atomistic.UnitcellStructure attribute)

 	(httk.atomistic.representativestructure.RepresentativeStructure attribute)

 	(httk.atomistic.structure.Structure attribute)

 	(httk.atomistic.unitcellstructure.UnitcellStructure attribute)

 	pbc_to_nonperiodic_vecs() (in module httk.atomistic.sitesutils)

 	pc (httk.atomistic.Structure attribute)

 	(httk.atomistic.structure.Structure attribute)

 	pc_a (httk.atomistic.Structure attribute)

 	(httk.atomistic.structure.Structure attribute)

 	pc_alpha (httk.atomistic.Structure attribute)

 	(httk.atomistic.structure.Structure attribute)

 	pc_b (httk.atomistic.Structure attribute)

 	(httk.atomistic.structure.Structure attribute)

 	pc_beta (httk.atomistic.Structure attribute)

 	(httk.atomistic.structure.Structure attribute)

 	pc_c (httk.atomistic.Structure attribute)

 	(httk.atomistic.structure.Structure attribute)

 	pc_counts (httk.atomistic.Structure attribute)

 	(httk.atomistic.structure.Structure attribute)

 	pc_formula_parts (httk.atomistic.Structure attribute)

 	(httk.atomistic.structure.Structure attribute)

 	pc_gamma (httk.atomistic.Structure attribute)

 	(httk.atomistic.structure.Structure attribute)

 	pc_nbr_atoms (httk.atomistic.Structure attribute)

 	(httk.atomistic.structure.Structure attribute)

 	pc_volume (httk.atomistic.Structure attribute)

 	(httk.atomistic.structure.Structure attribute)

 	periodicity_to_pbc() (in module httk.atomistic.sitesutils)

 	phase_lines (httk.analysis.matsci.phasediagram.PhaseDiagram attribute)

 	PhaseDiagram (class in httk.analysis.matsci.phasediagram)

 	PhaseDiagramVisualizerPlugin (class in httk.analysis.matsci.vis.phasediagramvisualizerplugin)

 	pi() (httk.core.vectors.fracvector.FracVector class method)

 	(httk.FracVector class method)

 	(in module httk.core.vectors.vectormath)

 	
 	platon() (in module httk.external.platon_ext)

 	platon_lis_to_struct_broken() (in module httk.iface.platon_if)

 	platon_lis_to_struct_broken2() (in module httk.iface.platon_if)

 	platon_sites_to_styin() (in module httk.iface.platon_if)

 	platon_styin_to_sgstruct() (in module httk.iface.platon_if)

 	platon_styout_to_sgstruct() (in module httk.iface.platon_if)

 	platon_styout_to_structure() (in module httk.iface.platon_if)

 	plugin_init() (httk.analysis.matsci.vis.phasediagramvisualizerplugin.PhaseDiagramVisualizerPlugin method)

 	(httk.atomistic.atomisticio.structureioplugin.StructureIoPlugin method)

 	(httk.atomistic.formulautils.StructureFormulaPlugin method)

 	(httk.atomistic.supercellutils.StructureSupercellPlugin method)

 	(httk.atomistic.vis.structurephasediagramvisualizerplugin.StructurePhaseDiagramVisualizerPlugin method)

 	(httk.atomistic.vis.structurevisualizerplugin.StructureVisualizerPlugin method)

 	(httk.db.httkobjdbplugin.HttkObjDbPlugin method)

 	(httk.external.ase_glue.StructureAsePlugin method)

 	polyhedra() (httk.atomistic.vis.jmolstructurevisualizer.JmolStructureVisualizer method)

 	poscar_to_strs() (in module httk.iface.vasp_if)

 	poscar_to_structure() (in module httk.iface.vasp_if)

 	postconnect() (httk.atomistic.vis.jmolstructurevisualizer.JmolStructureVisualizer method)

 	pow() (in module httk.core.vectors.vectormath)

 	preconnect() (httk.atomistic.vis.jmolstructurevisualizer.JmolStructureVisualizer method)

 	prepare_single_run() (in module httk.iface.vasp_if)

 	primitive() (in module httk.external.pyspglib_ext)

 	primitive_from_conventional_cell() (in module httk.external.ase_glue)

 	print_citations() (in module httk.core.citation)

 	print_citations_at_exit() (in module httk.core.citation)

 	process() (in module httk.optimade.process)

 	process_init() (in module httk.optimade.process)

 	Project (class in httk)

 	(class in httk.core.project)

 	ProjectOwner (class in httk.core.project)

 	ProjectRef (class in httk)

 	(class in httk.core.project)

 	ProjectTag (class in httk)

 	(class in httk.core.project)

 	prototype_formula() (in module httk.atomistic.structureutils)

 	publickey() (in module httk.core.ed25519)

 	publish() (in module httk.httkweb.publish)

 	put() (httk.db.store.dictstore.DictStore method)

 	(httk.db.store.sqlstore.SqlStore method)

 	puts() (httk.db.store.dictstore.DictStore method)

 	(httk.db.store.dictstore.DictStore.Keeper method)

 	(httk.db.store.sqlstore.SqlStore method)

 	(httk.db.store.sqlstore.SqlStore.Keeper method)

Q

 	
 	query() (httk.db.backend.sqlite.Sqlite method)

R

 	
 	radians() (in module httk.core.vectors.vectormath)

 	random() (httk.core.vectors.fracvector.FracVector class method)

 	(httk.FracVector class method)

 	(httk.core.vectors.vector.Vector class method)

 	ratio (httk.atomistic.siteassignment.SiteAssignment attribute)

 	ratios (httk.atomistic.Assignments attribute)

 	(httk.atomistic.assignments.Assignments attribute)

 	(httk.atomistic.siteassignment.SiteAssignment attribute)

 	ratioslist (httk.atomistic.Assignments attribute)

 	(httk.atomistic.assignments.Assignments attribute)

 	rc (httk.atomistic.Structure attribute)

 	(httk.atomistic.structure.Structure attribute)

 	rc_a (httk.atomistic.RepresentativeStructure attribute)

 	(httk.atomistic.Structure attribute)

 	(httk.atomistic.representativestructure.RepresentativeStructure attribute)

 	(httk.atomistic.structure.Structure attribute)

 	rc_alpha (httk.atomistic.RepresentativeStructure attribute)

 	(httk.atomistic.Structure attribute)

 	(httk.atomistic.representativestructure.RepresentativeStructure attribute)

 	(httk.atomistic.structure.Structure attribute)

 	rc_b (httk.atomistic.RepresentativeStructure attribute)

 	(httk.atomistic.Structure attribute)

 	(httk.atomistic.representativestructure.RepresentativeStructure attribute)

 	(httk.atomistic.structure.Structure attribute)

 	rc_basis (httk.atomistic.RepresentativeStructure attribute)

 	(httk.atomistic.Structure attribute)

 	(httk.atomistic.representativestructure.RepresentativeStructure attribute)

 	(httk.atomistic.structure.Structure attribute)

 	rc_beta (httk.atomistic.RepresentativeStructure attribute)

 	(httk.atomistic.Structure attribute)

 	(httk.atomistic.representativestructure.RepresentativeStructure attribute)

 	(httk.atomistic.structure.Structure attribute)

 	rc_c (httk.atomistic.RepresentativeStructure attribute)

 	(httk.atomistic.Structure attribute)

 	(httk.atomistic.representativestructure.RepresentativeStructure attribute)

 	(httk.atomistic.structure.Structure attribute)

 	rc_cartesian_coordgroups (httk.atomistic.RepresentativeStructure attribute)

 	(httk.atomistic.Structure attribute)

 	(httk.atomistic.representativestructure.RepresentativeStructure attribute)

 	(httk.atomistic.structure.Structure attribute)

 	rc_cartesian_coords (httk.atomistic.RepresentativeStructure attribute)

 	(httk.atomistic.Structure attribute)

 	(httk.atomistic.representativestructure.RepresentativeStructure attribute)

 	(httk.atomistic.structure.Structure attribute)

 	rc_cartesian_occupationscoords (httk.atomistic.RepresentativeStructure attribute)

 	(httk.atomistic.Structure attribute)

 	(httk.atomistic.representativestructure.RepresentativeStructure attribute)

 	(httk.atomistic.structure.Structure attribute)

 	rc_cell_orientation (httk.atomistic.RepresentativeStructure attribute)

 	(httk.atomistic.Structure attribute)

 	(httk.atomistic.representativestructure.RepresentativeStructure attribute)

 	(httk.atomistic.structure.Structure attribute)

 	rc_counts (httk.atomistic.Structure attribute)

 	(httk.atomistic.structure.Structure attribute)

 	rc_gamma (httk.atomistic.RepresentativeStructure attribute)

 	(httk.atomistic.Structure attribute)

 	(httk.atomistic.representativestructure.RepresentativeStructure attribute)

 	(httk.atomistic.structure.Structure attribute)

 	rc_lengths_and_angles (httk.atomistic.RepresentativeStructure attribute)

 	(httk.atomistic.Structure attribute)

 	(httk.atomistic.representativestructure.RepresentativeStructure attribute)

 	(httk.atomistic.structure.Structure attribute)

 	rc_nbr_atoms (httk.atomistic.Structure attribute)

 	(httk.atomistic.structure.Structure attribute)

 	
 	rc_occupancies (httk.atomistic.Structure attribute)

 	(httk.atomistic.structure.Structure attribute)

 	rc_occupationssymbols (httk.atomistic.Structure attribute)

 	(httk.atomistic.structure.Structure attribute)

 	rc_reduced_coordgroups (httk.atomistic.Structure attribute)

 	(httk.atomistic.structure.Structure attribute)

 	rc_reduced_coords (httk.atomistic.Structure attribute)

 	(httk.atomistic.structure.Structure attribute)

 	rc_structure_to_symbols_and_scaled_positions() (in module httk.iface.ase_if)

 	rc_volume (httk.atomistic.RepresentativeStructure attribute)

 	(httk.atomistic.Structure attribute)

 	(httk.atomistic.representativestructure.RepresentativeStructure attribute)

 	(httk.atomistic.structure.Structure attribute)

 	read_cif() (in module httk.httkio.cif)

 	read_config() (in module httk.config.config)

 	(in module httk.httkweb.helpers)

 	read_keys() (in module httk.core.crypto)

 	read_manifest() (in module httk.task.reader)

 	read_outcar() (in module httk.iface.vasp_if)

 	reader() (in module httk.task.reader)

 	readstruct() (in module httk.iface.openbabel_if_notstable)

 	receive() (httk.external.command.Command method)

 	reciprocal() (httk.core.vectors.fracvector.FracVector method)

 	(httk.FracVector method)

 	reduce_by_symops() (in module httk.atomistic.spacegrouputils)

 	reduced_coordgroups (httk.atomistic.sites.Sites attribute)

 	reduced_coordgroups_to_input() (in module httk.iface.isotropy_if)

 	reduced_coords (httk.atomistic.sites.Sites attribute)

 	reduced_to_cartesian() (in module httk.atomistic.structureutils)

 	Reference (class in httk)

 	(class in httk.core.reference)

 	refresh() (httk.atomistic.vis.jmolstructurevisualizer.JmolStructureVisualizer method)

 	render_page() (in module httk.httkweb.app_curses)

 	RenderHttk (class in httk.httkweb.render_httk)

 	RenderRst (class in httk.httkweb.render_rst)

 	repeat() (httk.atomistic.vis.jmolstructurevisualizer.JmolStructureVisualizer method)

 	RepresentativeSites (class in httk.atomistic)

 	(class in httk.atomistic.representativesites)

 	RepresentativeStructure (class in httk.atomistic)

 	(class in httk.atomistic.representativestructure)

 	request() (in module httk.optimade.validation.request)

 	RequestError

 	reset() (httk.db.filteredcollection.FilteredCollection method)

 	Result (class in httk)

 	(class in httk.core.computation)

 	Result_RelaxedCellResult (class in httk.atomistic.results.relaxedcellresult)

 	Result_TotalEnergyResult (class in httk.atomistic.results.totalenergyresult)

 	retrieve() (httk.db.storable.TrivialStore method)

 	(httk.db.store.dictstore.DictStore method)

 	(httk.db.store.sqlstore.SqlStore method)

 	(httk.db.store.trivialstore.TrivialStore method)

 	(httk.httkweb.webgenerator.WebGenerator method)

 	rewind() (httk.core.basic.rewindable_iterator method)

 	rewindable_iterator (class in httk.core.basic)

 	right_punctuation_chars (httk.httkweb.render_httk.RenderHttk attribute)

 	rollback() (httk.db.backend.sqlite.Sqlite method)

 	rotate() (httk.atomistic.vis.jmolstructurevisualizer.JmolStructureVisualizer method)

 	rst_light_html_renderer() (httk.httkweb.render_httk.RenderHttk method)

 	rst_light_parse_textstyle() (httk.httkweb.render_httk.RenderHttk method)

 	rst_light_parser() (httk.httkweb.render_httk.RenderHttk method)

 	run() (httk.external.command.Command method)

 	(in module httk.external.jmol)

 	(in module httk.optimade.validation.all)

 	run_alot() (in module httk.core.vectors.fracmath)

 	run_app() (in module httk.httkweb.app_qt5)

S

 	
 	save() (httk.atomistic.atomisticio.structureioplugin.StructureIoPlugin method)

 	(httk.db.store.sqlstore.SqlStore method)

 	(in module httk)

 	(in module httk.httkio.save)

 	save_and_quit() (httk.atomistic.vis.jmolstructurevisualizer.JmolStructureVisualizer method)

 	save_struct() (in module httk.atomistic.atomisticio.structure_io)

 	Scalar (class in httk.core.vectors.vector)

 	scalarmult() (in module httk.core.ed25519)

 	scale_to_vol() (in module httk.atomistic.cellutils)

 	scaling() (httk.atomistic.Cell method)

 	(httk.atomistic.cell.Cell method)

 	(httk.atomistic.cellshape.CellShape method)

 	scaling_to_volume() (in module httk.atomistic.cellutils)

 	searcher() (httk.db.store.sqlstore.SqlStore method)

 	send() (httk.external.command.Command method)

 	serve() (in module httk.httkweb.serve)

 	(in module httk.optimade.serve)

 	set_common_denom() (httk.core.vectors.fracvector.FracVector class method)

 	(httk.FracVector class method)

 	set_defaults() (httk.atomistic.vis.jmolstructurevisualizer.JmolStructureVisualizer method)

 	set_denominator() (httk.core.vectors.fracvector.FracVector method)

 	(httk.FracVector method)

 	set_handler() (in module httk.optimade.optimade_filter_to_httk)

 	set_hull_data() (httk.analysis.matsci.phasediagram.PhaseDiagram method)

 	set_inv() (httk.core.vectors.mutablefracvector.MutableFracVector method)

 	(httk.MutableFracVector method)

 	set_limit() (httk.db.filteredcollection.FilteredCollection method)

 	set_mp_key() (in module httk.external.pymatgen_glue)

 	set_negative() (httk.core.vectors.mutablefracvector.MutableFracVector method)

 	(httk.MutableFracVector method)

 	set_normalize() (httk.core.vectors.mutablefracvector.MutableFracVector method)

 	(httk.MutableFracVector method)

 	set_normalize_half() (httk.core.vectors.mutablefracvector.MutableFracVector method)

 	(httk.MutableFracVector method)

 	set_set_denominator() (httk.core.vectors.mutablefracvector.MutableFracVector method)

 	(httk.MutableFracVector method)

 	set_simplify() (httk.core.vectors.mutablefracvector.MutableFracVector method)

 	(httk.MutableFracVector method)

 	set_T() (httk.core.vectors.mutablefracvector.MutableFracVector method)

 	(httk.MutableFracVector method)

 	setup() (in module httk.httkweb.helpers)

 	setup_phasediagram() (in module httk.atomistic.structurephasediagram)

 	setup_template_helpers() (in module httk.httkweb.helpers)

 	sha256file() (in module httk.core.crypto)

 	show() (httk.analysis.matsci.vis.phasediagramvisualizerplugin.PhaseDiagramVisualizerPlugin method)

 	(httk.atomistic.vis.asestructurevisualizer.AseStructureVisualizer method)

 	(httk.atomistic.vis.jmolstructurevisualizer.JmolStructureVisualizer method)

 	(httk.atomistic.vis.structurephasediagramvisualizerplugin.StructurePhaseDiagramVisualizerPlugin method)

 	(httk.atomistic.vis.structurevisualizerplugin.StructureVisualizerPlugin method)

 	(in module httk.external.gulp_ext)

 	sign() (httk.core.vectors.fracvector.FracVector method)

 	(httk.FracVector method)

 	(in module httk.core.vectors.vectormath)

 	Signature (class in httk)

 	(class in httk.core.signature)

 	signature() (in module httk.core.ed25519)

 	SignatureKey (class in httk)

 	(class in httk.core.signature)

 	simplex_le_solver() (in module httk.core.geometry)

 	simplify() (httk.core.vectors.fracvector.FracVector method)

 	(httk.FracVector method)

 	sin() (httk.core.vectors.fracvector.FracVector method)

 	(httk.FracVector method)

 	(in module httk.core.vectors.vectormath)

 	sinh() (in module httk.core.vectors.vectormath)

 	SiteAssignment (class in httk.atomistic.siteassignment)

 	Sites (class in httk.atomistic.sites)

 	sites_tidy() (in module httk.atomistic.sitesutils)

 	sites_to_platon() (in module httk.iface.platon_if)

 	sort_coordgroups() (in module httk.atomistic.sitesutils)

 	(in module httk.atomistic.structureutils)

 	Spacegroup (class in httk.atomistic.spacegroup)

 	spacegroup (httk.atomistic.Structure attribute)

 	(httk.atomistic.structure.Structure attribute)

 	spacegroup_filter() (in module httk.atomistic.spacegrouputils)

 	spacegroup_filter_specific() (in module httk.atomistic.spacegrouputils)

 	spacegroup_get_hall() (in module httk.atomistic.data.spacegroups)

 	(in module httk.atomistic.spacegrouputils)

 	spacegroup_get_hm() (in module httk.atomistic.data.spacegroups)

 	(in module httk.atomistic.spacegrouputils)

 	spacegroup_get_number() (in module httk.atomistic.data.spacegroups)

 	(in module httk.atomistic.spacegrouputils)

 	spacegroup_get_number_and_setting() (in module httk.atomistic.data.spacegroups)

 	(in module httk.atomistic.spacegrouputils)

 	spacegroup_get_number_of_settings() (in module httk.atomistic.data.spacegroups)

 	spacegroup_get_schoenflies() (in module httk.atomistic.data.spacegroups)

 	(in module httk.atomistic.spacegrouputils)

 	spacegroup_number (httk.atomistic.Structure attribute)

 	(httk.atomistic.structure.Structure attribute)

 	spacegroup_number_and_setting (httk.atomistic.Structure attribute)

 	(httk.atomistic.structure.Structure attribute)

 	spacegroup_parse() (in module httk.atomistic.spacegrouputils)

 	spglib_out_to_struct() (in module httk.iface.spglib_if)

 	spin() (httk.atomistic.vis.jmolstructurevisualizer.JmolStructureVisualizer method)

 	
 	split_chars_strip_comments() (in module httk.core.miniparser)

 	split_content() (httk.httkweb.render_httk.RenderHttk method)

 	sql() (httk.db.filteredcollection.FCSqlite method)

 	sql_count() (httk.db.filteredcollection.FCSqlite method)

 	sql_query() (httk.db.filteredcollection.FCSqlite method)

 	Sqlite (class in httk.db.backend.sqlite)

 	Sqlite.SqliteCursor (class in httk.db.backend.sqlite)

 	SqlStore (class in httk.db.store.sqlstore)

 	SqlStore.Keeper (class in httk.db.store.sqlstore)

 	sqrt() (httk.core.vectors.fracvector.FracVector method)

 	(httk.FracVector method)

 	(in module httk.core.vectors.vectormath)

 	stack_vecs() (httk.core.vectors.fracvector.FracVector class method)

 	(httk.FracVector class method)

 	(httk.core.vectors.vector.Vector class method)

 	standard_order_axes_transform() (in module httk.atomistic.cellutils)

 	standard_primitive() (in module httk.external.aflow_ext)

 	start() (httk.external.command.Command method)

 	(in module httk.external.jmol)

 	startup() (in module httk.httkweb.webserver)

 	stdin (httk.external.command.Command attribute)

 	stop() (httk.atomistic.vis.jmolstructurevisualizer.JmolStructureVisualizer method)

 	(httk.external.command.Command method)

 	Storable (class in httk.db.storable)

 	storable_init() (httk.db.storable.Storable method)

 	storable_props() (in module httk.db.storable)

 	storable_types() (in module httk.db.storable)

 	store() (httk.db.httkobjdbplugin.HttkObjDbPlugin method)

 	store_codependent_data() (httk.db.httkobjdbplugin.HttkObjDbPlugin method)

 	store_table() (httk.db.filteredcollection.FCSqlite method)

 	(httk.db.filteredcollection.FilteredCollection method)

 	string (httk.core.ioadapters.IoAdapterString attribute)

 	(httk.IoAdapterString attribute)

 	string_handler() (in module httk.optimade.optimade_filter_to_httk)

 	string_to_val_and_delta() (in module httk.core.vectors.fracmath)

 	stringmatching_handler() (in module httk.optimade.optimade_filter_to_httk)

 	struct_process_with_isotropy() (in module httk.external.isotropy_ext)

 	struct_to_cif() (in module httk.atomistic.atomisticio.structure_cif_io)

 	struct_to_cif_httk_simplified() (in module httk.atomistic.atomisticio.structure_cif_io)

 	struct_to_cifdata() (in module httk.atomistic.atomisticio.structure_cif_io)

 	struct_to_input() (in module httk.iface.isotropy_if)

 	Structure (class in httk.atomistic)

 	(class in httk.atomistic.structure)

 	structure_addsym_and_tidy() (in module httk.external.platon_ext)

 	structure_features_length_handler() (in module httk.optimade.optimade_filter_to_httk)

 	structure_features_set_handler() (in module httk.optimade.optimade_filter_to_httk)

 	structure_reduced_coordgroups_to_representative() (in module httk.atomistic.sitesutils)

 	structure_reduced_uc_to_representative() (in module httk.atomistic.structureutils)

 	structure_tidy() (in module httk.atomistic.structureutils)

 	(in module httk.external.platon_ext)

 	structure_tidy_old() (in module httk.external.platon_ext)

 	structure_to_ase_atoms() (in module httk.external.ase_glue)

 	structure_to_comment() (in module httk.iface.vasp_if)

 	structure_to_gulp() (in module httk.iface.gulp_if)

 	structure_to_jmol() (in module httk.iface.jmol_if)

 	structure_to_p1structure() (in module httk.atomistic.structureutils)

 	structure_to_platon() (in module httk.iface.platon_if)

 	structure_to_poscar() (in module httk.iface.vasp_if)

 	structure_to_sgstructure() (in module httk.atomistic.structureutils)

 	(in module httk.external.platon_ext)

 	structure_to_spglib_atoms() (in module httk.external.pyspglib_ext)

 	StructureAsePlugin (class in httk.external.ase_glue)

 	StructureFormulaPlugin (class in httk.atomistic.formulautils)

 	StructureIoPlugin (class in httk.atomistic.atomisticio.structureioplugin)

 	StructurePhaseDiagram (class in httk.atomistic)

 	(class in httk.atomistic.structurephasediagram)

 	StructurePhaseDiagramCompetingIndicies (class in httk.atomistic.structurephasediagram)

 	StructurePhaseDiagramVisualizerPlugin (class in httk.atomistic.vis.structurephasediagramvisualizerplugin)

 	StructureRef (class in httk.atomistic)

 	(class in httk.atomistic.structure)

 	StructureSupercellPlugin (class in httk.atomistic.supercellutils)

 	StructureTag (class in httk.atomistic)

 	(class in httk.atomistic.structure)

 	StructureVisualizerPlugin (class in httk.atomistic.vis.structurevisualizerplugin)

 	subdata() (httk.db.filteredcollection.FCMultiDict method)

 	submit_reader() (in module httk.task.reader)

 	submodule_import_external() (in module httk.external.subimport)

 	subtable() (httk.db.filteredcollection.FCSqlite method)

 	supercell (httk.atomistic.Structure attribute)

 	(httk.atomistic.UnitcellStructure attribute)

 	(httk.atomistic.structure.Structure attribute)

 	(httk.atomistic.unitcellstructure.UnitcellStructure attribute)

 	symbol (httk.atomistic.assignment.Assignment attribute)

 	(httk.atomistic.siteassignment.SiteAssignment attribute)

 	symbollists (httk.atomistic.Assignments attribute)

 	(httk.atomistic.assignments.Assignments attribute)

 	symbols (httk.atomistic.Assignments attribute)

 	(httk.atomistic.Structure attribute)

 	(httk.atomistic.assignments.Assignments attribute)

 	(httk.atomistic.siteassignment.SiteAssignment attribute)

 	(httk.atomistic.structure.Structure attribute)

 	symopshash() (in module httk.atomistic.spacegrouputils)

 	symopsmatrix() (in module httk.atomistic.spacegrouputils)

 	symopstuple() (in module httk.atomistic.spacegrouputils)

T

 	
 	T() (httk.core.vectors.fracvector.FracVector method)

 	(httk.FracVector method)

 	table() (httk.db.filteredcollection.FCSqlite method)

 	table_exists() (httk.db.backend.sqlite.Sqlite method)

 	TableOrColumn (class in httk.db.filteredcollection)

 	tan() (in module httk.core.vectors.vectormath)

 	tanh() (in module httk.core.vectors.vectormath)

 	TemplateEngineHttk (class in httk.httkweb.templateengine_httk)

 	TemplateEngineTemplator (class in httk.httkweb.templateengine_templator)

 	text() (httk.httkweb.app_curses.MyHTMLParser method)

 	tidy() (httk.atomistic.RepresentativeSites method)

 	(httk.atomistic.Structure method)

 	(httk.atomistic.representativesites.RepresentativeSites method)

 	(httk.atomistic.structure.Structure method)

 	timestamp_handler() (in module httk.optimade.optimade_filter_to_httk)

 	to() (httk.core.httkobject.HttkObject method)

 	(httk.HttkObject method)

 	to_Atoms() (httk.external.ase_glue.StructureAsePlugin method)

 	to_basis() (httk.atomistic.Assignments method)

 	(httk.atomistic.assignments.Assignments method)

 	(httk.atomistic.siteassignment.SiteAssignment method)

 	to_float() (httk.core.vectors.fracvector.FracVector method)

 	(httk.FracVector method)

 	to_floats() (httk.core.vectors.fracvector.FracVector method)

 	(httk.FracVector method)

 	to_fraction() (httk.core.vectors.fracvector.FracVector method)

 	(httk.FracVector method)

 	to_fractions() (httk.core.vectors.fracvector.FracVector method)

 	(httk.FracVector method)

 	to_FracVector() (httk.core.vectors.mutablefracvector.MutableFracVector method)

 	(httk.MutableFracVector method)

 	to_int() (httk.core.vectors.fracvector.FracVector method)

 	(httk.FracVector method)

 	to_ints() (httk.core.vectors.fracvector.FracVector method)

 	(httk.FracVector method)

 	to_string() (httk.core.vectors.fracvector.FracVector method)

 	(httk.FracVector method)

 	
 	to_strings() (httk.core.vectors.fracvector.FracVector method)

 	(httk.FracVector method)

 	to_tuple() (httk.core.httkobject.HttkObject method)

 	(httk.FracVector method)

 	(httk.HttkObject method)

 	(httk.core.vectors.fracvector.FracVector method)

 	total_number_of_atoms (httk.atomistic.RepresentativeSites attribute)

 	(httk.atomistic.UnitcellSites attribute)

 	(httk.atomistic.representativesites.RepresentativeSites attribute)

 	(httk.atomistic.sites.Sites attribute)

 	(httk.atomistic.unitcellsites.UnitcellSites attribute)

 	transform() (httk.atomistic.Structure method)

 	(httk.atomistic.UnitcellStructure method)

 	(httk.atomistic.structure.Structure method)

 	(httk.atomistic.unitcellstructure.UnitcellStructure method)

 	(in module httk.atomistic.structureutils)

 	TranslatorError

 	trivial_symmetry_reduce() (in module httk.atomistic.spacegrouputils)

 	TrivialStore (class in httk.db.storable)

 	(class in httk.db.store.trivialstore)

 	trivialstore (httk.db.storable.Storable attribute)

 	true_handler() (in module httk.optimade.optimade_filter_to_httk)

 	trunc() (in module httk.core.vectors.vectormath)

 	tuple_eye() (in module httk.core.vectors.fracvector)

 	(in module httk.core.vectors.vector)

 	tuple_index() (in module httk.core.vectors.fracvector)

 	(in module httk.core.vectors.vector)

 	tuple_random() (in module httk.core.vectors.fracvector)

 	(in module httk.core.vectors.vector)

 	tuple_slice() (in module httk.core.vectors.fracvector)

 	(in module httk.core.vectors.vector)

 	tuple_to_hexhash() (in module httk.core.crypto)

 	tuple_to_str() (in module httk.core.basic)

 	(in module httk.core.crypto)

 	tuple_zeros() (in module httk.core.vectors.fracvector)

 	(in module httk.core.vectors.vector)

 	types() (httk.core.httkobject.HttkObject class method)

 	(httk.HttkObject class method)

U

 	
 	uc (httk.atomistic.Structure attribute)

 	(httk.atomistic.structure.Structure attribute)

 	uc_a (httk.atomistic.Structure attribute)

 	(httk.atomistic.UnitcellStructure attribute)

 	(httk.atomistic.structure.Structure attribute)

 	(httk.atomistic.unitcellstructure.UnitcellStructure attribute)

 	uc_alpha (httk.atomistic.Structure attribute)

 	(httk.atomistic.UnitcellStructure attribute)

 	(httk.atomistic.structure.Structure attribute)

 	(httk.atomistic.unitcellstructure.UnitcellStructure attribute)

 	uc_b (httk.atomistic.Structure attribute)

 	(httk.atomistic.UnitcellStructure attribute)

 	(httk.atomistic.structure.Structure attribute)

 	(httk.atomistic.unitcellstructure.UnitcellStructure attribute)

 	uc_basis (httk.atomistic.Structure attribute)

 	(httk.atomistic.UnitcellStructure attribute)

 	(httk.atomistic.structure.Structure attribute)

 	(httk.atomistic.unitcellstructure.UnitcellStructure attribute)

 	uc_beta (httk.atomistic.Structure attribute)

 	(httk.atomistic.UnitcellStructure attribute)

 	(httk.atomistic.structure.Structure attribute)

 	(httk.atomistic.unitcellstructure.UnitcellStructure attribute)

 	uc_c (httk.atomistic.Structure attribute)

 	(httk.atomistic.UnitcellStructure attribute)

 	(httk.atomistic.structure.Structure attribute)

 	(httk.atomistic.unitcellstructure.UnitcellStructure attribute)

 	uc_cartesian_coordgroups (httk.atomistic.Structure attribute)

 	(httk.atomistic.UnitcellStructure attribute)

 	(httk.atomistic.structure.Structure attribute)

 	(httk.atomistic.unitcellstructure.UnitcellStructure attribute)

 	uc_cartesian_coords (httk.atomistic.Structure attribute)

 	(httk.atomistic.UnitcellStructure attribute)

 	(httk.atomistic.structure.Structure attribute)

 	(httk.atomistic.unitcellstructure.UnitcellStructure attribute)

 	uc_cartesian_occupationscoords (httk.atomistic.Structure attribute)

 	(httk.atomistic.UnitcellStructure attribute)

 	(httk.atomistic.structure.Structure attribute)

 	(httk.atomistic.unitcellstructure.UnitcellStructure attribute)

 	uc_cell (httk.atomistic.Structure attribute)

 	(httk.atomistic.structure.Structure attribute)

 	uc_cell_orientation (httk.atomistic.Structure attribute)

 	(httk.atomistic.UnitcellStructure attribute)

 	(httk.atomistic.structure.Structure attribute)

 	(httk.atomistic.unitcellstructure.UnitcellStructure attribute)

 	uc_counts (httk.atomistic.Structure attribute)

 	(httk.atomistic.UnitcellStructure attribute)

 	(httk.atomistic.structure.Structure attribute)

 	(httk.atomistic.unitcellstructure.UnitcellStructure attribute)

 	uc_formula (httk.atomistic.Structure attribute)

 	(httk.atomistic.structure.Structure attribute)

 	uc_formula_counts (httk.atomistic.Structure attribute)

 	(httk.atomistic.structure.Structure attribute)

 	uc_formula_parts (httk.atomistic.Structure attribute)

 	(httk.atomistic.structure.Structure attribute)

 	uc_formula_symbols (httk.atomistic.Structure attribute)

 	(httk.atomistic.structure.Structure attribute)

 	uc_gamma (httk.atomistic.Structure attribute)

 	(httk.atomistic.UnitcellStructure attribute)

 	(httk.atomistic.structure.Structure attribute)

 	(httk.atomistic.unitcellstructure.UnitcellStructure attribute)

 	uc_lengths_and_angles (httk.atomistic.Structure attribute)

 	(httk.atomistic.UnitcellStructure attribute)

 	(httk.atomistic.structure.Structure attribute)

 	(httk.atomistic.unitcellstructure.UnitcellStructure attribute)

 	uc_nbr_atoms (httk.atomistic.Structure attribute)

 	(httk.atomistic.structure.Structure attribute)

 	uc_occupancies (httk.atomistic.Structure attribute)

 	(httk.atomistic.structure.Structure attribute)

 	uc_occupationssymbols (httk.atomistic.Structure attribute)

 	(httk.atomistic.structure.Structure attribute)

 	
 	uc_reduced_coordgroups (httk.atomistic.Structure attribute)

 	(httk.atomistic.UnitcellStructure attribute)

 	(httk.atomistic.structure.Structure attribute)

 	(httk.atomistic.unitcellstructure.UnitcellStructure attribute)

 	uc_reduced_coordgroups_process_with_isotropy() (in module httk.external.isotropy_ext)

 	uc_reduced_coords (httk.atomistic.Structure attribute)

 	(httk.atomistic.UnitcellStructure attribute)

 	(httk.atomistic.structure.Structure attribute)

 	(httk.atomistic.unitcellstructure.UnitcellStructure attribute)

 	uc_reduced_occupationscoords (httk.atomistic.Structure attribute)

 	(httk.atomistic.structure.Structure attribute)

 	uc_sites (httk.atomistic.Structure attribute)

 	(httk.atomistic.structure.Structure attribute)

 	uc_structure_to_symbols_and_scaled_positions() (in module httk.iface.ase_if)

 	uc_volume (httk.atomistic.Structure attribute)

 	(httk.atomistic.UnitcellStructure attribute)

 	(httk.atomistic.structure.Structure attribute)

 	(httk.atomistic.unitcellstructure.UnitcellStructure attribute)

 	uc_volume_per_atom (httk.atomistic.RepresentativeStructure attribute)

 	(httk.atomistic.UnitcellStructure attribute)

 	(httk.atomistic.representativestructure.RepresentativeStructure attribute)

 	(httk.atomistic.unitcellstructure.UnitcellStructure attribute)

 	UnaryBooleanOp (class in httk.db.filteredcollection)

 	UnitcellSites (class in httk.atomistic)

 	(class in httk.atomistic.unitcellsites)

 	UnitcellStructure (class in httk.atomistic)

 	(class in httk.atomistic.unitcellstructure)

 	universal_opener() (in module httk.core.ioadapters)

 	unknown_comparison_handler() (in module httk.optimade.optimade_filter_to_httk)

 	unknown_has_handler() (in module httk.optimade.optimade_filter_to_httk)

 	unknown_length_handler() (in module httk.optimade.optimade_filter_to_httk)

 	unknown_stringmatching_handler() (in module httk.optimade.optimade_filter_to_httk)

 	unknown_unknown_handler() (in module httk.optimade.optimade_filter_to_httk)

 	UnquotedStr (class in httk.httkweb.helpers)

 	update() (httk.db.backend.sqlite.Sqlite method)

 	update_metadata() (httk.httkweb.webgenerator.Page method)

 	update_row() (httk.db.backend.sqlite.Sqlite method)

 	use() (httk.atomistic.assignment.Assignment class method)

 	(httk.FracVector class method)

 	(httk.HttkObject class method)

 	(httk.IoAdapterFileAppender class method)

 	(httk.IoAdapterFileReader class method)

 	(httk.IoAdapterFileWriter class method)

 	(httk.IoAdapterString class method)

 	(httk.IoAdapterStringList class method), [1]

 	(httk.MutableFracVector class method)

 	(httk.atomistic.Assignments class method)

 	(httk.atomistic.Cell class method)

 	(httk.atomistic.RepresentativeStructure class method)

 	(httk.atomistic.Structure class method)

 	(httk.atomistic.UnitcellStructure class method)

 	(httk.atomistic.assignments.Assignments class method)

 	(httk.atomistic.cell.Cell class method)

 	(httk.atomistic.representativestructure.RepresentativeStructure class method)

 	(httk.atomistic.siteassignment.SiteAssignment class method)

 	(httk.atomistic.sites.Sites class method)

 	(httk.atomistic.structure.Structure class method)

 	(httk.atomistic.unitcellstructure.UnitcellStructure class method)

 	(httk.core.httkobject.HttkObject class method)

 	(httk.core.ioadapters.IoAdapterFileAppender class method)

 	(httk.core.ioadapters.IoAdapterFileReader class method)

 	(httk.core.ioadapters.IoAdapterFileWriter class method)

 	(httk.core.ioadapters.IoAdapterFilename class method)

 	(httk.core.ioadapters.IoAdapterString class method)

 	(httk.core.ioadapters.IoAdapterStringList class method)

 	(httk.core.vectors.fracvector.FracVector class method)

 	(httk.core.vectors.mutablefracvector.MutableFracVector class method)

 	(httk.core.vectors.vector.Vector class method)

V

 	
 	val_to_tuple() (in module httk.atomistic.spacegrouputils)

 	validate() (httk.core.vectors.fracvector.FracVector method)

 	(httk.FracVector method)

 	(httk.MutableFracVector method)

 	(httk.core.vectors.mutablefracvector.MutableFracVector method)

 	validate_base_info() (in module httk.optimade.validation.base_info)

 	validate_base_info_request() (in module httk.optimade.validation.base_info)

 	validate_headers() (in module httk.optimade.validation.headers)

 	validate_optimade_request() (in module httk.optimade.validate)

 	validate_response() (in module httk.optimade.validation.response)

 	validate_response_request() (in module httk.optimade.validation.response)

 	validate_single_entry_request() (in module httk.optimade.validation.entry)

 	
 	variable() (httk.db.filteredcollection.FilteredCollection method)

 	(httk.db.storable.Storable class method)

 	Vector (class in httk.core.vectors.vector)

 	verify_crytpo_signature() (in module httk.core.crypto)

 	verify_crytpo_signature_old() (in module httk.core.crypto)

 	vformat() (httk.httkweb.templateengine_httk.HttkTemplateFormatter method)

 	vis (httk.analysis.matsci.phasediagram.PhaseDiagram attribute)

 	vol_to_scale() (in module httk.atomistic.cellutils)

 	volume (httk.atomistic.Cell attribute)

 	(httk.atomistic.cell.Cell attribute)

 	volume_per_atom (httk.atomistic.Structure attribute)

 	(httk.atomistic.structure.Structure attribute)

W

 	
 	wait() (httk.analysis.matsci.vis.phasediagramvisualizerplugin.PhaseDiagramVisualizerPlugin method)

 	(httk.atomistic.vis.asestructurevisualizer.AseStructureVisualizer method)

 	(httk.atomistic.vis.jmolstructurevisualizer.JmolStructureVisualizer method)

 	(httk.atomistic.vis.structurevisualizerplugin.StructureVisualizerPlugin method)

 	wait_finish() (httk.external.command.Command method)

 	WebError

 	WebGenerator (class in httk.httkweb.webgenerator)

 	WebviewCurses (class in httk.httkweb.app_curses)

 	write_cif() (in module httk.httkio.cif)

 	write_generic_kpoints_file() (in module httk.iface.vasp_if)

 	
 	write_kpoints_file() (in module httk.iface.vasp_if)

 	write_poscar() (in module httk.iface.vasp_if)

 	wsgi_get_request() (in module httk.httkweb.wsgi)

 	wyckoff_sequence (httk.atomistic.Compound attribute)

 	(httk.atomistic.RepresentativeSites attribute)

 	(httk.atomistic.Structure attribute)

 	(httk.atomistic.compound.Compound attribute)

 	(httk.atomistic.representativesites.RepresentativeSites attribute)

 	(httk.atomistic.structure.Structure attribute)

 	wyckoff_symbol_matcher() (in module httk.atomistic.spacegrouputils)

X

 	
 	xrecover() (in module httk.core.ed25519)

Z

 	
 	zdecompressor() (in module httk.core.ioadapters)

 	zeros() (httk.core.vectors.fracvector.FracVector class method)

 	(httk.FracVector class method)

 	(httk.core.vectors.vector.Vector class method)

 httk.analysis.matsci.vis.matplotlibphasediagramvisualizer module

httk.analysis.matsci.vis.matplotlibphasediagramvisualizer module

 httk.analysis.matsci.vis.phasediagramvisualizerplugin module

httk.analysis.matsci.vis.phasediagramvisualizerplugin module

	
class httk.analysis.matsci.vis.phasediagramvisualizerplugin.PhaseDiagramVisualizerPlugin

	Bases: httk.core.httkobject.HttkPlugin

	
params()

	

	
plugin_init(phasediagram)

	

	
show(params={}, backends=['matplotlib'], debug=False)

	

	
wait()

	

_static/down.png

_static/file.png

_static/plus.png

_static/minus.png

_static/up-pressed.png

_static/generated/httk_overview/httk_overview_img_00.png
Rickard Armiento

Linkdping University, Sweden

April 10, 2018

Linkdping Linnaeus Initiative for
Novel Functional Materials, LiLi-NFM

s

"& Linkdping University

_static/up.png

_static/generated/httk_overview/httk_overview_img_01.png
The High-Throughput Toolkit (httk)
@ A toolkit for preparing and running calculations, analyzing the result,
store them in a global and/or in a personalized database.

@ The primary focus is automatization: run with as little human
intervention as possible.

@ Crucial for large datasets; convenient for smaller projects!

@ Intended to expand beyond atomi:
primary focus for now.

ic calculations, but those are our

The Open Materials Database (omdb)
@ A central collection of computational data where we store our results.
@ You can, if you want, submit results there as well.
o Easily interacts with httk; built using httk.

(LU

_static/ajax-loader.gif

_static/comment-close.png

_static/comment-bright.png

_static/down-pressed.png

_static/comment.png

nav.xhtml

 Table of Contents

 		
 The High-Throughput Toolkit (httk)

_static/generated/httk_overview/httk_overview_img_22.png
Op ta in Open Materials D.

Operate directly on data present in the open materials database:

(Not in present version; will be n next.)

import httk, httk.db
from httk.atomistic import Structure

store = httk.db.open_materials_database_store

search = store.searcher ()

search_struct = search.variable (Structure)

search.add_all (search_struct.formula_symbols.is_in(’0’,’ Ca’
search.output (search_struct,’structure’)

for match, header in search:
struct = match[0]

httk.task.creat

{"structur

_batch_task(’Runs’,’template’,
struct})

LT

[p———Y} [—,

_static/generated/httk_overview/httk_overview_img_24.png
Concluding ks

@ The High-Throughput Toolkit (httk) is a framework for easy
automatization of computational projects. It helps with setup,
execution, storage and search.

o A framework like this is crucial for projects that work with large
datasets, but also convenient for smaller projects.

@ For our own calculations, we store them at openmaterialsdb.se;
you can also submit your results there if you want (with your papers
cited and linked).

Funding:
@ The Swedish Research Council (VR) Grant No. 621-2011-4249.

@ The Linnaeus Environment at Link6ping on Nanoscale Functional Materials (LiLi-NFM)
funded by The Swedish Research Council

_static/generated/httk_overview/httk_overview_img_23.png
Installat

Easy to install
Linux / Unix / Mac OS X / Cygwin:

user@computer:> mkdir ~/bin/python
user@computer:> cd ~/bin/python
user@computer:> curl -0 http://httk.openmaterialsdb.se/downloads/
httk-latest.tgz
user@computer:> tar -zxvf httk-latest.tgz
user@computer:> ls
httk-1.0.0 httk-latest.tgz
user@computer:> ln -f -s httk-1.0.0 httk-latest
user@computer:> source -/bin/python/httk-latest/setup.shell

Put the last statement in your .bashrc / .cshrc to always set the paths up
correctly.

[p———Y} [—,

_static/generated/httk_overview/httk_overview_img_12.png
Examples: Database

Search in your local database:

import httk
from httk.atomistic import Structure
import httk.db

backend = httk.db.backend.Sqlite(’example.sqlite’)
store = httk.db.store.SqlStore(backend)

search = store.searcher ()
search_struct = search.variable (Structure)
search.add(search_struct.uc_mbr_atoms < 40)

search.output (search_struct,’structure’)
for match, header in search:

struct = match[0]
print("Found:",struct.formula)

Output:

(’Found:’,’Zn02")

[p———Y} httk and

13

_static/generated/httk_overview/httk_overview_img_14.png
Examples: Computations

Generate a big batch of computation

import httk, httk.task, httk.db
from httk.atomistic import Structure

backend = httk.db.backend.Sqlite(’tutorial.sqlite’)
store = httk.db.store.SqlStore(backend)

search = store.searcher ()
search_struct = search.variable (Structure)

search.add_all (search_struct.formula_symbols.is_in(’ 07, Ca’,’Ti7))
search.output (search_struct, structure’)

for match, header in search:
struct = match[0]
httk.task.create_batch_task(Runs’,’/vasp/bateh/relax’,
{"structure”:struct})

[p———Y} httk and

_static/generated/httk_overview/httk_overview_img_13.png
Examples: Computations

Setup a simple VASP calculation to run manually:

import httk
import httk.iface.vasp_if

poscarspath="/path/to/your/poscars/POT_GGA_PAW_PBE/"
struct = httk.load("example.cif")

httk.iface.vasp_if.prepare_single_run("Run", struct,
templates='i:vacp/single/static’, poscarspath=poscarspath)

user@computer:> cd Run
user@computer:> vasp

Output:
running on 1 nodes
distr: ome band on 1 modes, 1 groups

vasp.5.2.12 11Novil complex

POSCAR found type information on POSCAR Ti N
POSCAR found : 2 types and 2 ions

Rickard Armiento (LU} httk and omdb

_static/generated/httk_overview/httk_overview_img_16.png
Examples: Computations

Read results back into database

import httk, httk.db, httk.task, os
from httk.atomistic.results import Result_TotalEnergyResult

backend = httk.db.backend.Sqlite(’example.sqlite’)
store = httk.db.store.SqlStore(backend)

reader = httk.task.reader(’./’, Runs/’)

for rundir, computation in reader:
struct = httk.load(os.path.join(rundir,”CONTCAR"))
outcar = httk.iface.vasp_if .read_outcar(os.path.join(rundir,"
OUTCAR. cleaned.relax2"))
total_energy_result = Result_TotalEmergyResult(computation,
struct, float(outcar.final_ energy))
store.save(total_ energy_result)

[p———Y} httk and

_static/generated/httk_overview/httk_overview_img_15.png
Examples: Computations

Run the batch of computations on a supercomputer ('kappa’):

userQcomputer:> httk-project-setup example_project
userQcomputer:> httk-computer-setup ssh-slurm kappa
userQcomputer:> httk-computer-install kappa

userOcomputer:> httk-tasks-send-to-computer kappa Runs/
userOcomputer:> httk-tasks-start-taskmanager kappa

userQcomputer:> httk-tasks-status kappa

userOcomputer:> httk-tasks-receive-from-computer kappa Runs/

[p———Y} [—,

_static/generated/httk_overview/httk_overview_img_18.png
Note: phase-diagram support in httk does not yet draw all phase lines.

[p———Y}

il 1

_static/generated/httk_overview/httk_overview_img_17.png
Examples: Computations

Draw a phase diagram from your stored batch runs

import httk, httk.db, httk.task, httk.atomistic.vis
from httk.atomistic import Structure, StructurePhaseDiagram
from httk.atomistic.results import Result_TotalEnergyResult

backend = httk.db.backend.Sqlite(’example.sqlite’)

store = httk.db.store.SqlStore(backend)

search = store.searcher ()

search_total_energy = search.variable(Result_TotalEnergyResult)
search_struct = search.variable (Structure)
search.add(search_total_energy.structure search_struct)
search.add_all (search_struct.formula_symbols.is_in(’0’, Ca’,’Ti7))
search.output (search_total_emergy,’ total energy result’)

structures, energies = [1,[]

for match, header in search:
total energy_result = match[0]
structures +- [total energy_result.structure]
energies += [total_energy. result.total_energyl

pd = StructurePhaseDiagram.create (structures,energies)
pd.vis.show(debug=True)

(LU httk and

18

_static/generated/httk_overview/httk_overview_img_20.png
Submit results to the glo

Submit to central database
user@compute

:> httk-project-submit

Note:

o Will verify very carefully that you actually mean to make your data
publicly available on the web via omdb.

o Your files are signed by a private key; you can always be identified as
the "owner’ of these files.

@ You can change/add reference information after submission by editing
ht.project/references and running

httk-project-submit-update-references

@ You can withdraw your data at a later point with
httk-project-submit-widthdraw
Note: when you run httk-project-setup a directory ht.project is created to identify this
project. You can copy the project directory everywhere you have files relating to this project

You can then run httk-project-submit in each such directory, and the files are aggregated on
our servers.

il 1

_static/generated/httk_overview/httk_overview_img_19.png
Examples: Computations

It is easy to put your own data in the database

import httk, httk.db
from httk.atomistic import Structure

class StructureIsEdible(httk.HttkObject)
Ohttk.httk_typed_init ({’structure’:Structure,

’is_edible’:bool})
def __init__(self, structure, is_edible
self.structure = structure
self.is_edible = is_edible

backend = httk.db.backend.Sqlite(’example.sqlite’)
store = httk.db.store.SqlStore(backend)

tablesalt = httk.load(’NaCl.cif’)
arsenic = httk.load(’As.cif’)

edible = StructureIsEdible(tablesalt,True)
store.save(edible)
edible = StructureIsEdible(arsenic,False)
store.save(edible)

(LU httk and

_static/generated/httk_overview/httk_overview_img_21.png
& 5.© |) epemmarm oo o =1 0mcern s vt 06 9 B 6
Open Materials Database T

‘Search for Wserials that Mt Cricria

P 1

M AT o S Ol o o spechcaly Rac, e s i
a1 ;

R s o s e e T

‘Data an marerial: MGEORP2 (1050)

Gonersi Data
B] s 23550
L B

Resals ot lo o lersd

Compuagons relaled o tis mateial

[p———Y}

‘April 10, 2018

_static/generated/httk_overview/httk_overview_img_03.png
Ove

ew

Components:

@ The httk python library:
» Handling crystal structures.
@ Prepare calculations to be run.
o Storage, retrieval, search and analysis of data in database.

o The httk scripts:

o Handling large sets of computer runs.

@ Scripting that allow advanced multi-stage runs to be run on clusters
with limited walltime.

s Managing ongoing runs across many supercomputers.

o Easy submission of results to omdb.

[p———Y} httk and il 10,

_static/generated/httk_overview/httk_overview_img_02.png
ase-centric High-Throughp

The httk is an independent implementation of the Database-centric
high-throughput methodology pioneered by G. Ceder, and others.

Published Materials (icsd, cod)

Predicted Materials h k
. tt:

Theoretical and
‘experimental validation

See: A. Jain, G. Hautier, C. J. Moore, S. P. Ong, C. C. Fischer, T.
Mueller, K. A. Persson, G. Ceder, Comp. Mat. Sci. 50, 2295 (2011).

httk and omdb

_static/generated/httk_overview/httk_overview_img_05.png
A few programming examples for atomistic computation will follow.

(This is a more technical part of this presentation)

[p———Y}

_static/generated/httk_overview/httk_overview_img_04.png
Why not extend existing libraries (ASE, pymatgen, etc.) instead?

o Different core design choices
o Database interaction as easy as possible; python objects can be stored,
searched, retrieved; mixing different databases.
» Preserves numbers exactly (fractions instead of floating point), helps a
lot with crystal geometry and database interaction.
o Different attitude to dependencies
@ No libraries outside standard python needed to get httk up and
running. Not even numpy or scipy.
@ Other libraries can be/are called when needed.
o httk goes out of its way to help you load the library you want from e.g.
odd locations (helpful to, e.g., avoid old system-wide version)
o Instead, httk is compatible / interacts with those libraries; i.e., you
can translate between ASE, pymatgen, etc., and use their features
interchangeably.

(LU

_static/generated/httk_overview/httk_overview_img_07.png
Examples: Structu

Of course one can also create and modify structures directly in code:

from httk.atomistic import Structure

cell = [[1.0, 0.0, 0.0],
folo, 1.0, 0.0],
fo.0, 0.0, 1.01]
coordgroups = [
[0.5, 0.5, 0.5]
1.1
f0.0, 0.0, 0.0]
1.1

[0.5, 0.0, 0.0],[0.0, 0.5, 0.0],[0.0, 0.0, 0.5]
1

assigaments = ['7b7, Ti7,707]

volume 2.79

struct Structure.create(uc_cell=cell,
uc_reduced_coordgroup
asaignuentasassignmants,
uc_volume=volume)

oordgroups ,

Rickar

jento (LiU) [—,

18

_static/generated/httk_overview/httk_ove